
Simscape™

User's Guide

R2017b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simscape™ User's Guide
© COPYRIGHT 2007–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
March 2007 Online only New for Version 1.0 (Release 2007a)
September 2007 Online only Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.2 (Release 2009b)
March 2010 Online only Revised for Version 3.3 (Release 2010a)
September 2010 Online only Revised for Version 3.4 (Release 2010b)
April 2011 Online only Revised for Version 3.5 (Release 2011a)
September 2011 Online only Revised for Version 3.6 (Release 2011b)
March 2012 Online only Revised for Version 3.7 (Release 2012a)
September 2012 Online only Revised for Version 3.8 (Release 2012b)
March 2013 Online only Revised for Version 3.9 (Release 2013a)
September 2013 Online only Revised for Version 3.10 (Release 2013b)
March 2014 Online only Revised for Version 3.11 (Release 2014a)
October 2014 Online only Revised for Version 3.12 (Release 2014b)
March 2015 Online only Revised for Version 3.13 (Release 2015a)
September 2015 Online only Revised for Version 3.14 (Release 2015b)
October 2015 Online only Rereleased for Version 3.13.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 4.0 (Release 2016a)
September 2016 Online only Revised for Version 4.1 (Release 2016b)
March 2017 Online only Revised for Version 4.2 (Release 2017a)
September 2017 Online only Revised for Version 4.3 (Release 2017b)





Model Construction
1

Basic Principles of Modeling Physical Networks . . . . . . . . . . 1-2
Overview of the Physical Network Approach to Modeling

Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Variable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Building the Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 1-5
Direction of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Connector Ports and Connection Lines . . . . . . . . . . . . . . . . . . 1-8

Connecting Simscape Diagrams to Simulink Sources and
Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Simscape Block Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Library Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Accessing the Block Libraries . . . . . . . . . . . . . . . . . . . . . . . . 1-13

Essential Physical Modeling Techniques . . . . . . . . . . . . . . . . 1-15
Building Your Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Using the Conserving Ports . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Using the Physical Signal Ports . . . . . . . . . . . . . . . . . . . . . . 1-16

Creating and Simulating a Simple Model . . . . . . . . . . . . . . . . 1-18
Building a Simscape Diagram . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Modifying Initial Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Running the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Adjusting the Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30

Modeling Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
Grounding Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
Avoiding Numerical Simulation Issues . . . . . . . . . . . . . . . . . 1-39

Domain-Specific Line Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42

v

Contents



Plot Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45

Thermal Liquid Models
2

Modeling Thermal Liquid Systems . . . . . . . . . . . . . . . . . . . . . . 2-2
When to Use Thermal Liquid Blocks . . . . . . . . . . . . . . . . . . . . 2-2
Modeling Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Establish Model Requirements . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Model Physical Components . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Prepare Model for Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Run Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Thermal Liquid Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Why Use Thermal Liquid Blocks? . . . . . . . . . . . . . . . . . . . . . . 2-7
Representing Thermal Liquid Components . . . . . . . . . . . . . . . 2-7
Specifying Thermal Liquid Medium . . . . . . . . . . . . . . . . . . . . 2-9
Modeling Multidomain Systems . . . . . . . . . . . . . . . . . . . . . . . 2-9

Thermal Liquid Modeling Framework . . . . . . . . . . . . . . . . . . 2-11
How Blocks Represent Components . . . . . . . . . . . . . . . . . . . 2-11
How Ports Represent Interfaces . . . . . . . . . . . . . . . . . . . . . . 2-12
Full Flux Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Heat Transfer in Insulated Oil Pipeline . . . . . . . . . . . . . . . . . 2-15
Oil Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Simscape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Run Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Run Optimization Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27

Two-Phase Fluid Models
3

Manually Generate Fluid Property Tables . . . . . . . . . . . . . . . 3-2
Fluid Property Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Steps for Generating Property Tables . . . . . . . . . . . . . . . . . . . 3-3

vi Contents



Before Generating Property Tables . . . . . . . . . . . . . . . . . . . . . 3-3
Create Fluid Property Functions . . . . . . . . . . . . . . . . . . . . . . . 3-3
Set Property Table Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Create Pressure-Normalized Internal Energy Grids . . . . . . . . 3-5
Map Grids Onto Pressure-Specific Internal Energy Space . . . . 3-5
Obtain Fluid Properties at Grid Points . . . . . . . . . . . . . . . . . . 3-6
Visualize Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Gas System Models
4

Modeling Gas Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Intended Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Network Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Gas Property Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Blocks with Gas Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Reference Node and Grounding Rules . . . . . . . . . . . . . . . . . . . 4-5
Initial Conditions for Blocks with Finite Gas Volume . . . . . . . 4-6
Choked Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Flow Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Simple Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

Change Flow Boundary Conditions . . . . . . . . . . . . . . . . . . . . 4-20

Model Simulation
5

How Simscape Models Represent Physical Systems . . . . . . . . 5-2
Representations of Physical Systems . . . . . . . . . . . . . . . . . . . 5-2
Differential, Differential-Algebraic, and Algebraic Systems . . 5-2
Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Events and Zero Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Working with Simscape Representation . . . . . . . . . . . . . . . . . 5-3
Managing Zero Crossings in Simscape Models . . . . . . . . . . . . 5-4

vii



How Simscape Simulation Works . . . . . . . . . . . . . . . . . . . . . . . 5-6
Simscape Simulation Phases . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Equation Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Initial Conditions Computation . . . . . . . . . . . . . . . . . . . . . . . 5-9
Transient Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Transient Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Setting Up Solvers for Physical Models . . . . . . . . . . . . . . . . . 5-12
About Simulink and Simscape Solvers . . . . . . . . . . . . . . . . . 5-12
Choosing Simulink and Simscape Solvers . . . . . . . . . . . . . . . 5-12
Harmonizing Simulink and Simscape Solvers . . . . . . . . . . . . 5-14

Important Concepts and Choices in Physical Simulation . . 5-17
Variable-Step and Fixed-Step Solvers . . . . . . . . . . . . . . . . . . 5-17
Explicit and Implicit Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Full and Sparse Linear Algebra . . . . . . . . . . . . . . . . . . . . . . 5-18
Event Detection and Location . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Unbounded, Bounded, and Fixed-Cost Simulation . . . . . . . . 5-19
Global and Local Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19

Making Optimal Solver Choices for Physical Simulation . . 5-21
Simulating with Variable Time Step . . . . . . . . . . . . . . . . . . . 5-21
Simulating with Fixed Time Step — Local and Global Fixed-

Step Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Simulating with Fixed Cost . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Troubleshooting and Improving Solver Performance . . . . . . . 5-23
Multiple Local Solvers Example with a Mixed Stiff-Nonstiff

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

Filtering Input Signals and Providing Time Derivatives . . . 5-26

System Scaling by Nominal Values . . . . . . . . . . . . . . . . . . . . . 5-29
Enable or Disable System Scaling by Nominal Values . . . . . . 5-29
Possible Sources of Nominal Values and Their Evaluation

Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
Specify Nominal Value-Unit Pairs for a Model . . . . . . . . . . . 5-30
Modify Nominal Values for a Block Variable . . . . . . . . . . . . . 5-33

Troubleshooting Simulation Errors . . . . . . . . . . . . . . . . . . . . 5-36
Troubleshooting Tips and Techniques . . . . . . . . . . . . . . . . . . 5-36
System Configuration Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-37

viii Contents



Numerical Simulation Issues . . . . . . . . . . . . . . . . . . . . . . . . 5-39
Initial Conditions Solve Failure . . . . . . . . . . . . . . . . . . . . . . 5-40
Transient Simulation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 5-41

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Sample Time and Solver Restrictions . . . . . . . . . . . . . . . . . . 5-43
Algebraic Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
Unsupported Simulink Tools and Features . . . . . . . . . . . . . . 5-44
Restricted Simulink Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45
Simulink Tools Not Compatible with Simscape Blocks . . . . . 5-46
Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49

Variable Initialization and Operating Points
6

Block-Level Variable Initialization . . . . . . . . . . . . . . . . . . . . . . 6-2
Initializing Block Variables for Model Simulation . . . . . . . . . . 6-2
Variable Initialization Priority . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Suggested Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Set Priority and Initial Target for Block Variables . . . . . . . . 6-5

Initialize Variables for a Mass-Spring-Damper System . . . . . 6-7

Variable Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
About Variable Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27
Switching Between Tree View and Flat View . . . . . . . . . . . . 6-29
Useful Filtering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 6-31
Saving Viewer Configuration . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Link to Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32
Interaction with Model Updates and Simulation . . . . . . . . . . 6-34

Using Operating Point Data for Model Initialization . . . . . . 6-36
Using Operating Points to Initialize Model Variables . . . . . . 6-36
Suggested Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37
Extracting Variable Initialization Data into an Operating

Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37

ix



Manipulating Operating Point Data . . . . . . . . . . . . . . . . . . . 6-38
Applying Operating Point Data to Initialize Model . . . . . . . . 6-38

Initialize Model Using Operating Point from Logged
Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41

Linearization and Trimming
7

Finding an Operating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
What Is an Operating Point? . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Finding Operating Points in Physical Models . . . . . . . . . . . . . 7-3

Linearizing at an Operating Point . . . . . . . . . . . . . . . . . . . . . . 7-6
What Is Linearization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Linearizing a Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Linearize an Electronic Circuit . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Explore the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Linearize with Steady-State Solver and linmod Function . . . 7-16
Linearize with Simulink Control Design Software . . . . . . . . 7-18
Use Control System Toolbox Software for Bode Analysis . . . . 7-19

Linearize a Plant Model for Use in Feedback Control
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22

Explore the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
Trim Using the Controller and Linearize with Simulink linmod

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25
Linearize with Simulink Control Design Software . . . . . . . . 7-26

Simscape Run-Time Parameters
8

About Simscape Run-Time Parameters . . . . . . . . . . . . . . . . . . 8-2

Show Simscape Run-Time Parameter Settings . . . . . . . . . . . . 8-5

x Contents



Manage Simscape Run-Time Parameters . . . . . . . . . . . . . . . . . 8-7
Show Simscape Run-Time Parameter Settings . . . . . . . . . . . . 8-7
Specify Simscape Run-Time Parameters . . . . . . . . . . . . . . . . . 8-7
Set the Default Parameter Behavior for Generated Code . . . . 8-8
Selectively Override the Inline Default Behavior . . . . . . . . . . 8-8

Specify and Change a Simscape Run-Time Parameter . . . . . 8-10
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10
Specify a Parameter as Run-Time Configurable . . . . . . . . . . 8-10
Change a Simscape Run-Time Parameter Using Fast

Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11

Troubleshoot Simscape Run-Time Parameter Issues . . . . . . 8-13
Simscape Run-Time Parameter Setting Not Visible . . . . . . . 8-13
Simulation Does Not Respond to Simscape Run-Time

Parameter Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13

How Simscape Run-Time Parameters and Simulink Tunable
Parameters Differ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15

Improve Parameter-Sweeping Efficiency Using Simscape
Run-Time Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18

Model Referencing with Run-Time Configurable
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18

Code Generation with Run-Time Configurable Parameters . . 8-18
Fast Restart with Simscape Run-Time Parameters . . . . . . . . 8-19

Decrease Computational Cost by Inlining Simscape Run-
Time Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21

Real-Time Simulation
9

Model Preparation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Obtain Reference Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Determine Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Adjust Model Fidelity or Scope . . . . . . . . . . . . . . . . . . . . . . . . 9-4

Real-Time Model Preparation Workflow . . . . . . . . . . . . . . . . . 9-6
Prepare Your Model for Real-Time Simulation . . . . . . . . . . . . 9-8

xi



Insufficient Computational Capability for Workflow
Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10

Improving Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Why Speed and Accuracy Matter for Real-Time Simulation . 9-12
Balancing Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . 9-13
Eliminating Effects That Require Intensive Computation . . . 9-14
Optimizing Local and Global Solver Configurations . . . . . . . 9-15
Upgrading Target Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Simulating Parts of the System in Parallel . . . . . . . . . . . . . . 9-15

Determine Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

Reduce Computation Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27
Data Logging and Monitoring Guidelines . . . . . . . . . . . . . . . 9-27
Improve Data Logging and Monitoring Efficiency . . . . . . . . . 9-28
Additional Methods for Reducing Computational Cost . . . . . 9-31

Reduce Fast Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Why Reduce Fast Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Frequency-Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Pole Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34
Linearize the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35
Perform Frequency-Response and Pole-Speed Analyses . . . . 9-39
Identify and Eliminate the Sources of Fast Dynamics . . . . . . 9-43

Reduce Numerical Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-56
Why Reduce Stiffness? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-56
Review Reference Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-57
Identify and Modify a Stiff Element . . . . . . . . . . . . . . . . . . . 9-59
Analyze Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-61

Reduce Zero Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-66
Why Reduce Zero Crossings? . . . . . . . . . . . . . . . . . . . . . . . . . 9-66
Obtain Reference Results and Plot Simulation Step Size . . . . 9-66
Identify and Modify Elements That Cause Zero Crossings . . 9-71
Analyze the Results of the Modified Model . . . . . . . . . . . . . . 9-75

Partition a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-79

Manage Model Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-88
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-88

xii Contents



Fixed-Cost Simulation for Real-Time Viability . . . . . . . . . . . 9-89

Real-Time Simulation Workflow . . . . . . . . . . . . . . . . . . . . . . . 9-91
Make Your Model Real-Time Viable . . . . . . . . . . . . . . . . . . . 9-94
Insufficient Computational Capability for Real-Time

Viability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-96

Solvers for Real-Time Simulation . . . . . . . . . . . . . . . . . . . . . . 9-97
Choosing Between Discrete and Continuous Solvers . . . . . . . 9-98
Computational Cost for Continuous Solvers . . . . . . . . . . . . . 9-98
How Numerical Stiffness Affects Solver Choice . . . . . . . . . . . 9-99
Using Simscape Local Fixed-Step Solvers . . . . . . . . . . . . . . 9-100

Troubleshooting Real-Time Simulation Issues . . . . . . . . . . 9-102
Avoid Computer Overloads and Unacceptable Simulation

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-102
Optimize Real-Time Application Execution Using Simscape

Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-102

Determine System Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . 9-104
Obtain Reference Results . . . . . . . . . . . . . . . . . . . . . . . . . . 9-104
Simulate with an Implicit Fixed-Step Solver . . . . . . . . . . . . 9-105
Simulate with an Explicit Fixed-Step Solver . . . . . . . . . . . . 9-107
Analyze the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-109

Estimate Computation Costs . . . . . . . . . . . . . . . . . . . . . . . . . 9-111

Choose Step Size and Number of Iterations . . . . . . . . . . . . . 9-114
Obtain Reference Results . . . . . . . . . . . . . . . . . . . . . . . . . . 9-115
Determine Maximum Step Size for Accurate Results . . . . . 9-117
Parameterize Global and Local Solver Settings . . . . . . . . . . 9-119
Perform Fixed-Step, Fixed-Cost Simulation . . . . . . . . . . . . 9-120
Adjust Solver Settings to Improve Accuracy . . . . . . . . . . . . 9-124

What Is Hardware-In-The-Loop Simulation? . . . . . . . . . . . . 9-131
Why Perform Hardware-In-The-Loop Simulation? . . . . . . . 9-132

Hardware-In-The-Loop Simulation Workflow . . . . . . . . . . . 9-135
Perform Hardware-In-The-Loop Simulation . . . . . . . . . . . . 9-139
Insufficient Computational Capability for Hardware-In-The-

Loop Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-140

xiii



Code Generation Requirements . . . . . . . . . . . . . . . . . . . . . . 9-142
Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-142
Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-143

Software and Hardware Configuration . . . . . . . . . . . . . . . . 9-144

Signal and Parameter Visualization and Control . . . . . . . . 9-146

Troubleshoot Hardware-in-the-Loop Simulation Issues . . 9-148

Generate, Download, and Execute Code . . . . . . . . . . . . . . . . 9-150
Requirements for Building and Executing Simulink Real-Time

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-150
Create, Build, and Download a Real-Time Application . . . . 9-150
Execute Real-Time Application . . . . . . . . . . . . . . . . . . . . . . 9-151

Check for Target Hardware Overruns . . . . . . . . . . . . . . . . . 9-153
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-153
About Simulation Overruns . . . . . . . . . . . . . . . . . . . . . . . . 9-153
Generate Reference Results . . . . . . . . . . . . . . . . . . . . . . . . 9-154
Configure Model for Deployment . . . . . . . . . . . . . . . . . . . . . 9-155
Evaluate Task-Execution Time . . . . . . . . . . . . . . . . . . . . . . 9-157
Adjust Step Size Based on Maximum Task-Execution Time 9-159

Change Parameter Values on Target Hardware . . . . . . . . . 9-163
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-163
Configure the Simscape Model for Deployment . . . . . . . . . . 9-163
Deploy the Model to the Real-Time Target Machine . . . . . . 9-165
Change Parameters and See Results Using Simulink Real-Time

Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-166

Requirements for Using Alternative Platforms . . . . . . . . . . 9-172
Hardware Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-172
Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-172

Extending Embedded and Generic Real-Time System Target
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-174

Precompiled Static Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 9-176

Initialization Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-177

xiv Contents



Code Generation
10

About Code Generation from Simscape Models . . . . . . . . . . 10-2

Reasons for Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Using Code-Related Products and Features . . . . . . . . . . . . . 10-4

How Simscape Code Generation Differs from Simulink . . . 10-5
Simscape and Simulink Code Generated Separately . . . . . . . 10-5
Compiler and Processor Architecture Requirements . . . . . . . 10-5
Precompiled Libraries Provided for Selected Compilers . . . . 10-5
Simscape Code Reuse Not Supported . . . . . . . . . . . . . . . . . . 10-6
Tunable Parameters Not Supported . . . . . . . . . . . . . . . . . . . 10-6
Simscape Run-Time Parameter Inlining Override of Global

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6

Data Logging
11

About Simulation Data Logging . . . . . . . . . . . . . . . . . . . . . . . 11-2
Suggested Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

Enable Data Logging for the Whole Model . . . . . . . . . . . . . . . 11-5

Log Data for Selected Blocks Only . . . . . . . . . . . . . . . . . . . . . 11-6

Data Logging Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

Log and Plot Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

Log Simulation Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15

Log and View Simulation Data for Selected Blocks . . . . . . 11-20

Log, Navigate, and Plot Simulation Data . . . . . . . . . . . . . . . 11-24

xv



About the Simscape Results Explorer . . . . . . . . . . . . . . . . . . 11-29
Link to MATLAB Session . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29
Link to Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30

Plot Simulation Data in Different Units . . . . . . . . . . . . . . . . 11-33

Use Custom Units to Plot Simulation Data . . . . . . . . . . . . . 11-39

View Sparkline Plots of Simulation Data . . . . . . . . . . . . . . . 11-43

Stream Logging Data to Disk . . . . . . . . . . . . . . . . . . . . . . . . . 11-50
Saving and Retrieving Logged Simulation Data . . . . . . . . . 11-51
Streaming to Disk and parfor Loop . . . . . . . . . . . . . . . . . . . 11-52

Model Statistics
12

Simscape Model Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Updating the Statistics Viewer . . . . . . . . . . . . . . . . . . . . . . . 12-3

1-D Physical System Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 12-5

3-D Multibody System Statistics . . . . . . . . . . . . . . . . . . . . . . . 12-8

1-D/3-D Interface Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11

View Model Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13

Access Block Variables Using Statistics Viewer . . . . . . . . . 12-19

Physical Units
13

How to Work with Physical Units . . . . . . . . . . . . . . . . . . . . . . 13-2

Unit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4

xvi Contents



How to Specify Units in Block Dialogs . . . . . . . . . . . . . . . . . 13-11

Thermal Unit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13
About Affine Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13
When to Apply Affine Conversion . . . . . . . . . . . . . . . . . . . . 13-13

How to Apply Affine Conversion . . . . . . . . . . . . . . . . . . . . . . 13-15

Angular Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17

Units for Angular Velocity and Frequency . . . . . . . . . . . . . 13-18

Working with Simulink Units . . . . . . . . . . . . . . . . . . . . . . . . 13-20

Add-On Product License Management
14

About the Simscape Editing Mode . . . . . . . . . . . . . . . . . . . . . 14-2
Suggested Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
What You Can Do in Restricted Mode . . . . . . . . . . . . . . . . . . 14-3
What You Can Do in Full Mode . . . . . . . . . . . . . . . . . . . . . . 14-4
Switching Between Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Working with Block Libraries . . . . . . . . . . . . . . . . . . . . . . . . 14-7

Set the Model Loading Preference . . . . . . . . . . . . . . . . . . . . . 14-9

Save a Model in Restricted Mode . . . . . . . . . . . . . . . . . . . . . 14-11
Example of Saving a Model in Restricted Mode . . . . . . . . . . 14-12

Work with a Model in Restricted Mode . . . . . . . . . . . . . . . . 14-14
How to Simulate and Fine-Tune a Model in Restricted

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14
How to Add and Delete Simulink Blocks in Restricted

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
Performing an Operation Disallowed in Restricted Mode . . 14-24

Switch from Restricted to Full Mode . . . . . . . . . . . . . . . . . . 14-28

xvii



Get Editing Mode Information . . . . . . . . . . . . . . . . . . . . . . . . 14-30
What Is the Current Mode? . . . . . . . . . . . . . . . . . . . . . . . . . 14-30
Which Licenses Are Checked Out? . . . . . . . . . . . . . . . . . . . 14-30

xviii Contents



Model Construction

• “Basic Principles of Modeling Physical Networks” on page 1-2
• “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-10
• “Simscape Block Libraries” on page 1-12
• “Essential Physical Modeling Techniques” on page 1-15
• “Creating and Simulating a Simple Model” on page 1-18
• “Modeling Best Practices” on page 1-35
• “Domain-Specific Line Styles” on page 1-42
• “Plot Lookup Tables” on page 1-45

1



Basic Principles of Modeling Physical Networks
In this section...
“Overview of the Physical Network Approach to Modeling Physical Systems” on page 1-
2
“Variable Types” on page 1-4
“Building the Mathematical Model” on page 1-5
“Direction of Variables” on page 1-6
“Connector Ports and Connection Lines” on page 1-8

Overview of the Physical Network Approach to Modeling Physical
Systems
Simscape software is a set of block libraries and special simulation features for modeling
physical systems in the Simulink® environment. It employs the Physical Network
approach, which differs from the standard Simulink modeling approach and is
particularly suited to simulating systems that consist of real physical components.

Simulink blocks represent basic mathematical operations. When you connect Simulink
blocks together, the resulting diagram is equivalent to the mathematical model, or
representation, of the system under design. Simscape technology lets you create a
network representation of the system under design, based on the Physical Network
approach. According to this approach, each system is represented as consisting of
functional elements that interact with each other by exchanging energy through their
ports.

These connection ports are nondirectional. They mimic physical connections between
elements. Connecting Simscape blocks together is analogous to connecting real
components, such as pumps, valves, and so on. In other words, Simscape diagrams mimic
the physical system layout. If physical components can be connected, their models can be
connected, too. You do not have to specify flow directions and information flow when
connecting Simscape blocks, just as you do not have to specify this information when you
connect real physical components. The Physical Network approach, with its Through and
Across variables and nondirectional physical connections, automatically resolves all the
traditional issues with variables, directionality, and so on.

The number of connection ports for each element is determined by the number of energy
flows it exchanges with other elements in the system, and depends on the level of

1 Model Construction

1-2



idealization. For example, a fixed-displacement hydraulic pump in its simplest form can
be represented as a two-port element, with one energy flow associated with the inlet
(suction) and the other with the outlet. In this representation, the angular velocity of the
driving shaft is assumed constant, making it possible to neglect the energy exchange
between the pump and the shaft. To account for a variable driving torque, you need a
third port associated with the driving shaft.

An energy flow is characterized by its variables. Each energy flow is associated with two
variables, one Through and one Across (see “Variable Types” on page 1-4 for more
information). Usually, these are the variables whose product is the energy flow in watts.
They are called the basic, or conjugate, variables. For example, the basic variables for
mechanical translational systems are force and velocity, for mechanical rotational
systems—torque and angular velocity, for hydraulic systems—flow rate and pressure, for
electrical systems—current and voltage.

The following example illustrates a Physical Network representation of a double-acting
hydraulic cylinder.

The element is represented with three energy flows: two flows of hydraulic energy
through the inlet and outlet of the cylinder and a flow of mechanical energy associated
with the rod motion. It therefore has the following three connector ports:

• A — Hydraulic conserving port associated with pressure p1 (an Across variable) and
flow rate q1 (a Through variable)

• B — Hydraulic conserving port associated with pressure p2 (an Across variable) and
flow rate q2 (a Through variable)

• R — Mechanical translational conserving port associated with rod velocity v3 (an
Across variable) and force F3 (a Through variable)

 Basic Principles of Modeling Physical Networks

1-3



See “Connector Ports and Connection Lines” on page 1-8 for more information on
connector port types.

Variable Types

Physical Network approach supports two types of variables:

• Through — Variables that are measured with a gauge connected in series to an
element.

• Across — Variables that are measured with a gauge connected in parallel to an
element.

The following table lists the Through and Across variables associated with each type of
physical domain in Simscape software:
Physical Domain Across Variable Through Variable
Electrical Voltage Current
Hydraulic Pressure Flow rate
Magnetic Magnetomotive force (mmf) Flux
Mechanical rotational Angular velocity Torque
Mechanical translational Translational velocity Force
Gas Pressure and temperature Mass flow rate and energy

flow rate
Thermal Temperature Heat flow
Thermal liquid Pressure and temperature Mass flow rate and energy

flow rate
Two-phase fluid Pressure and specific

internal energy
Mass flow rate and energy
flow rate

Note Generally, the product of each pair of Across and Through variables associated with
a domain is power (energy flow in watts). The exceptions are magnetic domain (where
the product of mmf and flux is not power, but energy), and the three thermodynamic
domains (gas, thermal liquid, and two-phase fluid), where products of both variable pairs
are not power. These result in a pseudo-bond graph.

1 Model Construction

1-4



Building the Mathematical Model

Through and Across variables associated with all the energy flows form the basis of the
mathematical model of the block.

For example, the model of a double-acting hydraulic cylinder shown in the previous
illustration can be described with a simple set of equations:

F p A p A
3 1 1 2 2

= -i i

q A v
1 1 3

= i

q A v
2 2 3

= i

where
q1,q2 Flow rates through ports A and B, respectively (Through variables)
p1,p2 Gauge pressures at ports A and B, respectively (Across variables)
A1,A2 Piston effective areas
F3 Rod force (Through variable)
v3 Rod velocity (Across variable)

The model could be considerably more complex, for example, it could account for friction,
fluid compressibility, inertia of the moving parts, and so on. For all these different
mathematical models, however, the element configuration (that is, the number and type
of ports and the associated Through and Across variables) would remain the same,
meaning that the Physical Network approach lets you substitute models of different

 Basic Principles of Modeling Physical Networks

1-5



levels of complexity without introducing any changes to the schematic. For example, you
can start developing your system by using the Resistive Tube block from the Foundation
library, which accounts only for friction losses. At a later stage in development, you may
want to account for fluid compressibility. You can then replace it with a Hydraulic
Pipeline block, available with Simscape Fluids™ block libraries, or, depending on your
application, even with a Segmented Pipeline block if you also need to account for fluid
inertia. This modeling principle is called incremental modeling.

Direction of Variables

Each variable is characterized by its magnitude and sign. The sign is the result of
measurement orientation. The same variable can be positive or negative, depending on
the polarity of a measurement gauge.

Elements with only two ports are characterized with one pair of variables, a Through
variable and an Across variable. Since these variables are closely related, their
orientation is defined with one direction. For example, if an element is oriented from port
A to port B, it implies that the Through variable (TV) is positive if it “flows” from A to B,
and the Across variable is determined as AV = AVA – AVB, where AVA and AVB are the
element node potentials or, in other words, the values of this Across variable at ports A
and B, respectively.

This approach to the direction of variables has the following benefits:

• Provides a simple and consistent way to determine whether an element is active or
passive. Energy is one of the most important characteristics to be determined during
simulation. If the variables direction, or sign, is determined as described above, their

1 Model Construction

1-6



product (that is, the energy) is positive if the element consumes energy, and is
negative if it provides energy to a system. This rule is followed throughout the
Simscape software.

• Simplifies the model description. Symbol A → B is enough to specify variable polarity
for both the Across and the Through variables.

• Lets you apply the oriented graph theory to network analysis and design.

As an example of variables direction rules, let us consider the Ideal Force Source block.
In this block, as in many other mechanical blocks, port C is associated with the source
reference point (case), and port R is associated with the rod.

The block positive direction is from port C to port R. This means that the force is positive
if it acts in the direction from C to R, and causes bodies connected to port R to accelerate
in the positive direction. The relative velocity is determined as v = vC – vR, where vR, vC
are the absolute velocities at ports R and C, respectively, and it is negative if velocity at
port R is greater than that at port C. The power generated by the source is computed as
the product of force and velocity, and is negative if the source provides energy to the
system.

Definition of positive direction is different for different blocks. Check the block source or
the block reference page if in doubt about the block orientation and direction of variables.

All the elements in a network are divided into active and passive elements, depending on
whether they deliver energy to the system or dissipate (or store) it. Active elements (force
and velocity sources, flow rate and pressure sources, etc.) must be oriented strictly in
accordance with the line of action or function that they are expected to perform in the
system, while passive elements (dampers, resistors, springs, pipelines, etc.) can be
oriented either way.

 Basic Principles of Modeling Physical Networks

1-7



Connector Ports and Connection Lines

Simscape blocks may have the following types of ports:

• Physical conserving ports — Nondirectional ports (for example, hydraulic or
mechanical) that represent physical connections and relate physical variables based
on the Physical Network approach.

• Physical signal ports — Unidirectional ports transferring signals that use an internal
Simscape engine for computations.

Each of these ports and connections between them are described in greater detail below.

Physical Conserving Ports

Simscape blocks have special conserving ports . You connect conserving ports with
physical connection lines, distinct from normal Simulink lines. Physical connection lines
have no inherent directionality and represent the exchange of energy flows, according to
the Physical Network approach.

• You can connect conserving ports only to other conserving ports of the same type.
• The physical connection lines that connect conserving ports together are

nondirectional lines that carry physical variables (Across and Through variables, as
described above) rather than signals. You cannot connect physical lines to Simulink
ports or to physical signal ports.

• Two directly connected conserving ports must have the same values for all their
Across variables (such as pressure or angular velocity).

• You can branch physical connection lines. When you do so, components directly
connected with one another continue to share the same Across variables. Any
Through variable (such as flow rate or torque) transferred along the physical
connection line is divided among the multiple components connected by the branches.
How the Through variable is divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch point
equals the sum of all its values flowing out.

Each type of physical conserving ports used in Simscape blocks uniquely represents a
physical modeling domain. For a list of port types, along with the Through and Across
variables associated with each type, see the table in “Variable Types” on page 1-4.

1 Model Construction

1-8



For improved readability of block diagrams, each Simscape domain uses a distinct
default color and line style for the connection lines. For more information, see “Domain-
Specific Line Styles” on page 1-42.

Physical Signal Ports

Physical signal ports  carry signals between Simscape blocks. You connect them with
regular connection lines, similar to Simulink signal connections. Physical signal ports are
used in Simscape block diagrams instead of Simulink input and output ports to increase
computation speed and avoid issues with algebraic loops. Physical signals can have units
associated with them. You specify the units along with the parameter values in the block
dialogs, and Simscape software performs the necessary unit conversion operations when
solving a physical network.

Simscape Foundation library contains, among other sublibraries, a Physical Signals
block library. These blocks perform math operations and other functions on physical
signals, and allow you to graphically implement equations inside the Physical Network.

Physical signal lines also have a distinct style and color in block diagrams, similar to
physical connection lines. For more information, see “Domain-Specific Line Styles” on
page 1-42.

See Also

Related Examples
• “Creating and Simulating a Simple Model” on page 1-18

More About
• “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-10

 See Also

1-9



Connecting Simscape Diagrams to Simulink Sources and
Scopes

Simscape block diagrams use physical signals instead of regular Simulink signals.
Therefore, you need converter blocks to connect Simscape diagrams to Simulink sources
and scopes.

Use the Simulink-PS Converter block to connect Simulink sources or other Simulink
blocks to the inputs of a Physical Network diagram. You can also use it to specify the
input signal units. For more information, see the Simulink-PS Converter block reference
page.

Use the PS-Simulink Converter block to connect outputs of a Physical Network diagram
to Simulink scopes or other Simulink blocks. You can also use it to specify the desired
output signal units. For more information, see the PS-Simulink Converter block
reference page.

1 Model Construction

1-10



For a detailed example of using converter blocks to connect Simscape diagrams to
Simulink sources and scopes, see “Creating and Simulating a Simple Model” on page 1-
18.

See Also

Related Examples
• “Creating and Simulating a Simple Model” on page 1-18

More About
• “Physical Signal Ports” on page 1-9

 See Also

1-11



Simscape Block Libraries
In this section...
“Library Structure Overview” on page 1-12
“Accessing the Block Libraries” on page 1-13

Library Structure Overview
Simscape block library contains two libraries that belong to the Simscape product:

• Foundation library — Contains basic hydraulic, mechanical, electrical, magnetic,
thermal, thermal liquid, two-phase fluid, gas, and physical signal blocks, organized
into sublibraries according to technical discipline and function performed

• Utilities library — Contains essential environment blocks for creating Physical
Networks models

In addition, if you have installed any of the add-on products of the Physical Modeling
family, you will see the corresponding libraries under the main Simscape library.

Simscape Foundation libraries contain a comprehensive set of basic elements and
building blocks, such as:

• Mechanical building blocks for representing one-dimensional translational and
rotational motion

• Electrical building blocks for representing electrical components and circuits
• Magnetic building blocks that represent electromagnetic components
• Hydraulic building blocks that model fundamental hydraulic effects and can be

combined to create more complex hydraulic components
• Thermal building blocks that model fundamental thermal effects
• Thermal liquid building blocks that model fundamental thermodynamic effects in

liquids
• Two-phase fluid building blocks that model fundamental thermodynamic effects in

systems where the working agent is part liquid and part vapor
• Gas building blocks that let you model gas systems with various levels of idealization:

perfect gas, semiperfect gas, or real gas
• Physical Signals block library that lets you perform math operations on physical

signals, and graphically enter equations inside the physical network

1 Model Construction

1-12



Using the elements contained in these Foundation libraries, you can create more complex
components that span different physical domains. You can then group this assembly of
blocks into a subsystem and parameterize it to reuse and share these components.

In addition to Foundation libraries, there is also a Simscape Utilities library, which
contains utility blocks, such as:

• Solver Configuration block, which contains parameters relevant to numerical
algorithms for Simscape simulations. Each Simscape diagram (or each topologically
distinct physical network in a diagram) must contain a Solver Configuration block.

• Simulink-PS Converter block and PS-Simulink Converter block, to connect Simscape
and Simulink blocks. Use the Simulink-PS Converter block to connect Simulink
outports to Physical Signal inports. Use the PS-Simulink Converter block to connect
Physical Signal outports to Simulink inports.

For examples of using these blocks in a Simscape model, see the tutorial “Creating and
Simulating a Simple Model” on page 1-18.

You can combine all these blocks in your Simscape diagrams to model physical systems.
You can also use the basic Simulink blocks in your diagrams, such as sources or scopes.
See “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-10 for
more information on how to do this.

Simscape block libraries contain a comprehensive selection of blocks that represent
engineering components such as valves, resistors, springs, and so on. These prebuilt
blocks, however, may not be sufficient to address your particular engineering needs.
When you need to extend the existing block libraries, use the Simscape language to
define customized components, or even new physical domains, as textual files. Then
convert your textual components into libraries of additional Simscape blocks that you can
use in your model diagrams. For more information on how to do this, see “Typical
Simscape Language Tasks”.

Accessing the Block Libraries

You can access the blocks through the Simulink Library Browser. To display the Library
Browser type slLibraryBrowser in the MATLAB® Command Window. Then expand
the Simscape entry in the contents tree.

 Simscape Block Libraries

1-13



When you create a new model using the ssc_new command, or type simscape in the
MATLAB Command Window, the main Simscape library opens in a separate window.

The Simscape library consists of two top-level libraries, Foundation and Utilities. In
addition, if you have installed any of the add-on products of the Physical Modeling
family, you will see the corresponding libraries under Simscape library, as shown in the
following illustration. Some of these libraries contain second-level and third-level
sublibraries. You can expand each library by double-clicking its icon.

1 Model Construction

1-14



Essential Physical Modeling Techniques

Building Your Model
The rules that you must follow when building a physical model with Simscape software
are described in “Basic Principles of Modeling Physical Networks” on page 1-2. This
section briefly reviews these rules.

• Build your physical model by using a combination of blocks from the Simscape
Foundation and Utilities libraries. Simscape software lets you create a network
representation of the system under design, based on the Physical Network approach.
According to this approach, each system is represented as consisting of functional
elements that interact with each other by exchanging energy through their ports.

• Each Simscape diagram (or each topologically distinct physical network in a diagram)
must contain a Solver Configuration block from the Simscape Utilities library.

• If you have hydraulic elements in your model, the working fluid used in the hydraulic
circuit defines their global parameters, such as fluid density, fluid kinematic
viscosity, fluid bulk modulus, and so on. To specify the working fluid, attach a Custom
Hydraulic Fluid block (or a Hydraulic Fluid block, available with Simscape Fluids
block libraries) to each topologically distinct hydraulic circuit. If no Hydraulic Fluid
block or Custom Hydraulic Fluid block is attached to a circuit, the hydraulic blocks
use the default fluid, which is equivalent to fluid defined by a Custom Hydraulic Fluid
block with the default parameter values.

• If you have gas elements in your model, default gas properties are for dry air. Attach
a Gas Properties (G) block to each topologically distinct circuit to change gas
properties.

• To connect regular Simulink blocks (such as sources or scopes) to your physical
network diagram, use the converter blocks, as described in “Using the Physical Signal
Ports” on page 1-16.

• Use the incremental modeling approach. Start with a simple model, run and
troubleshoot it, then add the desired special effects. For example, you can start
developing your system by using the Resistive Tube block from the Foundation
library, which accounts only for friction losses. At a later stage in development, you
may want to account for fluid compressibility. You can then replace it with a
Hydraulic Pipeline block, available with Simscape Fluids block libraries, or,
depending on your application, even with a Segmented Pipeline block if you also need
to account for fluid inertia. For all these different mathematical models, the element
configuration (that is, the number and type of ports and the associated Through and

 Essential Physical Modeling Techniques

1-15



Across variables) would remain the same, meaning that the Physical Network
approach lets you substitute models of different levels of complexity without
introducing any changes to the schematic.

Simscape blocks, in general, feature both Conserving ports  and Physical Signal inports
and outports .

Using the Conserving Ports

The following rules apply to Conserving ports:

• There are different types of Physical Conserving ports used in Simscape block
diagrams, such as hydraulic, electrical, mechanical translational, mechanical
rotational, and so on. Each type has specific Through and Across variables associated
with it. For more information, see “Variable Types” on page 1-4.

• You can connect Conserving ports only to other Conserving ports of the same type.
Domain-specific line styles and colors help distinguish between different domains and
facilitate the connection process. For more information, see “Domain-Specific Line
Styles” on page 1-42.

• The Physical connection lines that connect Conserving ports together are
nondirectional lines that carry physical variables (Across and Through variables, as
described above) rather than signals. You cannot connect Physical lines to Simulink
ports or to Physical Signal ports.

• Two directly connected Conserving ports must have the same values for all their
Across variables (such as voltage or angular velocity).

• You can branch Physical connection lines. When you do so, components directly
connected with one another continue to share the same Across variables. Any
Through variable (such as current or torque) transferred along the Physical
connection line is divided among the multiple components connected by the branches.
How the Through variable is divided is determined by the system dynamics.

For each Through variable, the sum of all its values flowing into a branch point
equals the sum of all its values flowing out.

Using the Physical Signal Ports

The following rules apply to Physical Signal ports:

1 Model Construction

1-16



• You can connect Physical Signal ports to other Physical Signal ports with regular
connection lines, similar to Simulink signal connections. These connection lines carry
physical signals between Simscape blocks.

• You can connect Physical Signal ports to Simulink ports through special converter
blocks. Use the Simulink-PS Converter block to connect Simulink outports to Physical
Signal inports. Use the PS-Simulink Converter block to connect Physical Signal
outports to Simulink inports.

• Physical Signals can have units associated with them. Simscape block dialogs let you
specify the units along with the parameter values, where appropriate. Use the
converter blocks to associate units with an input signal and to specify the desired
output signal units.

For examples of applying these rules when creating an actual physical model, see the
tutorial “Creating and Simulating a Simple Model” on page 1-18.

 Essential Physical Modeling Techniques

1-17



Creating and Simulating a Simple Model
In this section...
“Building a Simscape Diagram” on page 1-18
“Modifying Initial Settings” on page 1-26
“Running the Simulation” on page 1-27
“Adjusting the Parameters” on page 1-30

Building a Simscape Diagram

In this example, you are going to model a simple mechanical system and observe its
behavior under various conditions. This tutorial illustrates the essential steps to building
a physical model on page 1-15 and makes you familiar with using the basic Simscape
blocks.

Note For time-saving techniques and advanced ways of analyzing simulation data, see
the “Essential Steps for Constructing a Physical Model” tutorial.

The following schematic represents a simple model of a car suspension. It consists of a
spring and damper connected to a body (represented as a mass), which is agitated by a
force. You can vary the model parameters, such as the stiffness of the spring, the mass of
the body, or the force profile, and view the resulting changes to the velocity and position
of the body.

1 Model Construction

1-18



To create an equivalent Simscape diagram, follow these steps:

1 Open the Simulink Library Browser, as described in “Simscape Block Libraries” on
page 1-12.

2 Create a new Simulink model using the Blank Model template. The software
creates an empty model in memory and displays it in a new model editor window.

Note Alternately, you can type ssc_new at the MATLAB Command prompt, to
create a new model prepopulated with certain required and commonly used blocks.
For more information, see “Creating a New Simscape Model”.

3 By default, Simulink Editor hides the automatic block names in model diagrams. To
display hidden block names for training purposes, select Display and clear the Hide
Automatic Names check box.

4 Open the Simscape > Foundation Library > Mechanical > Translational Elements
library.

5 Drag the Mass, Translational Spring, Translational Damper, and two Mechanical
Translational Reference blocks into the model window.

6 Orient the blocks as shown in the following illustration. To rotate a block, select it
and press Ctrl+R.

 Creating and Simulating a Simple Model

1-19



7 Connect the Translational Spring, Translational Damper, and Mass blocks to one of
the Mechanical Translational Reference blocks as shown in the next illustration.

1 Model Construction

1-20



8 To add the representation of the force acting on the mass, open the Simscape >
Foundation Library > Mechanical > Mechanical Sources library and add the Ideal
Force Source block to your diagram.

To reflect the correct direction of the force shown in the original schematic, flip the
block by selecting Diagram > Rotate & Flip > Flip Block > Up-Down from the
top menu bar of the model window. Connect the block's port C (for “case”) to the
second Mechanical Translational Reference block, and its port R (for “rod”) to the
Mass block, as shown below.

 Creating and Simulating a Simple Model

1-21



9 Add the sensor to measure speed and position of the mass. Place the Ideal
Translational Motion Sensor block from the Mechanical Sensors library into your
diagram and connect it as shown below.

1 Model Construction

1-22



10 Now you need to add the sources and scopes. They are found in the regular Simulink
libraries. Open the Simulink > Sources library and copy the Signal Builder block into
the model. Then open the Simulink > Sinks library and copy two Scope blocks.
Rename one of the Scope blocks to Velocity and the other to Position.

 Creating and Simulating a Simple Model

1-23



11 Every time you connect a Simulink source or scope to a Simscape diagram, you have
to use an appropriate converter block, to convert Simulink signals into physical
signals and vice versa. Open the Simscape > Utilities library and copy a Simulink-PS
Converter block and two PS-Simulink Converter blocks into the model. Connect the
blocks as shown below.

1 Model Construction

1-24



12 Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block, found in the Simscape > Utilities library. Copy this block into
your model and connect it to the circuit by creating a branching point and connecting
it to the only port of the Solver Configuration block. Your diagram now should look
like this.

 Creating and Simulating a Simple Model

1-25



13 Your block diagram is now complete. Save it as mech_simple.

Modifying Initial Settings

After you have put together a block diagram of your model, as described in the previous
section on page 1-18, you need to select a solver and provide the correct values for
configuration parameters.

To prepare for simulating the model, follow these steps:

1 Model Construction

1-26



1 Select a Simulink solver. On the top menu bar of the model window, select
Simulation > Model Configuration Parameters. The Configuration Parameters
dialog box opens, showing the Solver node.

Under Solver options, set Solver to ode23t (mod.stiff/Trapezoidal).

Expand Additional options and set Max step size to 0.2.

Also note that Simulation time is specified to be between 0 and 10 seconds. You
can adjust this setting later, if needed.

Click OK to close the Configuration Parameters dialog box.
2 Save the model.

Running the Simulation

After you've put together a block diagram and specified the initial settings for your
model, you can run the simulation.

 Creating and Simulating a Simple Model

1-27



1 The input signal for the force is provided by the Signal Builder block. The signal
profile is shown in the illustration below. It starts with a value of 0, then at 4
seconds there is a step change to 1, and then it changes back to 0 at 6 seconds. This
is the default profile.

The Velocity scope outputs the mass velocity, and the Position scope outputs the
mass displacement as a function of time. Double-click both scopes to open them.

2
To run the simulation, click  in the model window toolbar. The Simscape solver
evaluates the model, calculates the initial conditions, and runs the simulation. For a
detailed description of this process, see “How Simscape Simulation Works” on page
5-6. Completion of this step may take a few seconds. The message in the bottom-
left corner of the model window provides the status update.

3 Once the simulation starts running, the Velocity and Position scope windows display
the simulation results, as shown in the next illustration.

1 Model Construction

1-28



In the beginning, the mass is at rest. Then at 4 seconds, as the input signal changes
abruptly, the mass velocity spikes in the positive direction and gradually returns to
zero. The mass position at the same time changes more gradually, on account of
inertia and damping, and stays at the new value as long as the force is acting upon
it. At 6 seconds, when the input signal changes back to zero, the velocity gets a
mirror spike, and the mass gradually returns to its initial position.

 Creating and Simulating a Simple Model

1-29



You can now adjust various inputs and block parameters and see their effect on the mass
velocity and displacement.

Adjusting the Parameters

After running the initial simulation, you can experiment with adjusting various inputs
and block parameters.

Try the following adjustments:

1 Change the force profile on page 1-30.
2 Change the model parameters. on page 1-32
3 Change the mass position output units. on page 1-34

Changing the Force Profile

This example shows how a change in the input signal affects the force profile, and
therefore the mass displacement.

1 Double-click the Signal Builder block to open it.
2 Click the first vertical segment of the signal profile and drag it from 4 to 2 seconds,

as shown below. Close the block dialog.

1 Model Construction

1-30



3 Run the simulation. The simulation results are shown in the following illustration.

 Creating and Simulating a Simple Model

1-31



Changing the Model Parameters

In our model, the force acts on a mass against a translational spring and damper,
connected in parallel. This example shows how changes in the spring stiffness and
damper viscosity affect the mass displacement.

1 Double-click the Translational Spring block. Set its Spring rate to 2000 N/m.

1 Model Construction

1-32



2 Run the simulation. The increase in spring stiffness results in smaller amplitude of
mass displacement, as shown in the following illustration.

3 Next, double-click the Translational Damper block. Set its Damping coefficient to
500 N/(m/s).

4 Run the simulation. Because of the increase in viscosity, the mass is slower both in
reaching its maximum displacement and in returning to the initial position, as
shown in the following illustration.

 Creating and Simulating a Simple Model

1-33



Changing the Mass Position Output Units

In our model, we have used the PS-Simulink Converter block in its default parameter
configuration, which does not specify units. Therefore, the Position scope outputs the
mass displacement in the default length units, that is, in meters. This example shows
how to change the output units for the mass displacement to millimeters.

1 Double-click the PS-Simulink Converter1 block. Type mm in the Output signal unit
combo box and click OK.

2 Run the simulation. In the Position scope window, click  to autoscale the scope
axes. The mass displacement is now output in millimeters, as shown in the following
illustration.

See Also

More About
• “Basic Principles of Modeling Physical Networks” on page 1-2
• “Modeling Best Practices” on page 1-35

1 Model Construction

1-34



Modeling Best Practices
In this section...
“Grounding Rules” on page 1-35
“Avoiding Numerical Simulation Issues” on page 1-39

Grounding Rules

This section contains guidelines for using domain-specific reference blocks (such as
Electrical Reference, Mechanical Translational Reference, and so on) in Simscape
diagrams, along with examples of correct and incorrect configurations.

Add reference blocks to your models according to the following rules:

• “Each Domain Requires at Least One Reference Block” on page 1-35
• “Each Circuit Requires at Least One Reference Block” on page 1-36
• “Multiple Connections to the Domain Reference Are Allowed Within a Circuit”

on page 1-38

Each Domain Requires at Least One Reference Block

Within a physical network, each domain must contain at least one reference block of the
appropriate type. For example, the electromechanical model shown in the following
diagram has both Electrical Reference and Rotational Reference blocks attached to the
appropriate circuits.

 Modeling Best Practices

1-35



Each Circuit Requires at Least One Reference Block

Each topologically distinct circuit within a domain must contain at least one reference
block. Some blocks, such as an Ideal Transformer, interface two parts of the network but
do not convey information about signal levels relative to the reference block. In the
following diagram, there are two separate electrical circuits, and the Electrical Reference
blocks are required on both sides of the Ideal Transformer block.

1 Model Construction

1-36



The next diagram would produce an error because it is lacking an electrical reference in
the circuit of the secondary winding.

The following diagram, however, will not produce an error because the resistor defines
the output voltage relative to the ground reference.

 Modeling Best Practices

1-37



Multiple Connections to the Domain Reference Are Allowed Within a Circuit

More that one reference block may be used within a circuit to define multiple connections
to the domain reference:

• Electrical conserving ports of all the blocks that are directly connected to ground must
be connected to an Electrical Reference block.

• All translational ports that are rigidly clamped to the frame (ground) must be
connected to a Mechanical Translational Reference block.

• All rotational ports that are rigidly clamped to the frame (ground) must be connected
to a Mechanical Rotational Reference block.

• Hydraulic conserving ports of all the blocks that are referenced to atmosphere (for
example, suction ports of hydraulic pumps, or return ports of valves, cylinders,
pipelines, if they are considered directly connected to atmosphere) must be connected
to a Hydraulic Reference block.

For example, the following diagram correctly indicates two separate connections to an
electrical ground.

1 Model Construction

1-38



Avoiding Numerical Simulation Issues

Certain configurations of physical modeling blocks can cause numerical difficulties or
slow down your simulation. When this happens, Simscape solver issues a warning in the
MATLAB workspace and, if it fails to initialize, a Simscape error.

In electrical circuits, common examples that can cause this behavior include voltage
sources connected in parallel with capacitors, inductors connected in series with current
sources, voltage sources connected in parallel, and current sources connected in series.
Often, the cause of the numerical difficulty is immediately apparent. For example, two
voltage sources in parallel must have identical voltage values; otherwise, the ports
connecting them would not be physical conserving ports. In practical circuits, topologies
such as parallel voltage sources are possible, and small difference in their instantaneous
voltages is possible due to parasitic series resistance.

Note Mathematically, these topologies result in Index-2 differential algebraic equations
(DAEs). Their solution requires two differentiations of the constraint equations and, as
such, it is numerically better to avoid these component topologies where possible.

 Modeling Best Practices

1-39



There are two approaches to resolving these difficulties. The first is to change the circuit
to an equivalent simpler one. In the example of two parallel voltage sources, one source
can be simply deleted. The same applies to two series current sources, the deleted one
being replaced by a short circuit. For some circuit topologies, however, it is not possible to
find an equivalent simpler one that resolves the problem, and the second approach is
needed.

The second approach is to include small parasitic resistances in the component. In the
Simscape Foundation library, the Capacitor and Inductor blocks include such parasitic
terms, so that you can connect capacitances in parallel with voltage sources and
inductors in series with current sources. If your circuit does not have any such topologies,
then you can change the default parasitic terms to zero. Note that other blocks do not
contain these parasitic terms, for example, the Mutual Inductor block. Therefore, if you
wanted to connect a mutual inductor primary in series with a current source, you would
need to introduce your own parasitic conductance across the primary winding.

Example of Using a Parasitic Resistance to Avoid Numerical Simulation Issues

The following diagram models a differentiator that might be used as part of a
Proportional-Integral-Derivative (PID) controller. You can open this model by typing
ssc_opamp_differentiator in the MATLAB Command Window.

Simulate the model, and you will see that the output is minus the derivative of the input
sinusoid.

1 Model Construction

1-40

matlab:ssc_opamp_differentiator


Now open the capacitor C block dialog, and set the series resistance to zero. The model
now runs very slowly and issues warnings about problems with transient initialization
and step size control for transient solve.

The cause of the problems is that the circuit effectively connects the voltage source in
parallel with the capacitor. This is because an ideal op-amp satisfies V+ = V- , where V+
and V- are the noninverting and inverting inputs, respectively. This is an example where
it is not possible to replace the circuit with an equivalent simpler one, and a parasitic
small resistance has to be introduced.

 Modeling Best Practices

1-41



Domain-Specific Line Styles
For improved readability of block diagrams, each Simscape domain uses a distinct
default color and line style for the connection lines. Physical signal lines also have a
distinct style and color.

Domain-specific line styles apply to the block icons as well. If all the block ports belong to
the same domain, then the whole block icon assumes the line style and color of that
domain. If a block has multiple port types, such as the Rotational Electromechanical
Converter, then relevant parts of the block icon assume domain-specific line styles and
colors.

To view the line styles assigned to each domain, in a model window, from the top menu
bar, select Display > Simscape > Legend. The Simscape Line Styles Legend window
opens, listing the line color assigned to each registered domain, the domain name, and
the domain path. If you click a domain path link, the Simscape file for the corresponding
domain opens in MATLAB Editor. For more information on domain paths and files, see
“Foundation Domains”.

1 Model Construction

1-42



To turn off domain-specific line styles for a particular model, in the model window, from
the top menu bar, select Display > Simscape > Domain Styles. This action clears the
check mark next to the Domain Styles menu option, and the block diagram display
changes to black connection lines and block icons, with physical ports visible at
connection points. Repeatedly selecting the Domain Styles menu option toggles the
domain-specific line styles for this model on or off, as indicated by the check mark.

To turn off domain-specific line styles for all models, on the MATLAB Toolstrip, click
Preferences. In the left pane of the Preferences dialog box, select Simscape, then clear
the Enable domain styles for all models check box.

 Domain-Specific Line Styles

1-43



1 Model Construction

1-44



Plot Lookup Tables
You can plot lookup table data specified for the PS Lookup Table (1D) and PS Lookup
Table (2D) blocks in your model. Plotting the tables lets you visualize the data before
simulating the model, to make sure that the table is correct. The plots reflect tabulated
data specified for the block, as well as the selected interpolation and extrapolation
options.

If you change the underlying table data, plotting it again opens a new window. This way,
you can compare the plots side-by-side and see how the block parameter values affect the
resulting lookup function.

1 Create a new model and add a PS Lookup Table (1D) block. Specify the block
parameters as shown.

2 Right-click the block in your model. From the context menu, select Foundation
Library > Plot Table.

A figure window opens containing the plot of the data.

 Plot Lookup Tables

1-45



3 In the block dialog box, change the Interpolation method parameter value to
Smooth.

4 Plot the data again, by right-clicking the block and selecting Foundation Library >
Plot Table.

A new figure window opens.

1 Model Construction

1-46



The curve shape has changed because of the new interpolation method.
5 In the block dialog box, change the Extrapolation method parameter value to

Nearest.
6 Plot the data again, by right-clicking the block and selecting Foundation Library >

Plot Table.

A new figure window opens.

 Plot Lookup Tables

1-47



The curve shape within the table grid (between 1 and 5 along the x-axis) has not
changed, but the new extrapolation method affects how the curve continues outside
the specified range.

Note If you change the Extrapolation method parameter value to Error, there is
no extrapolation region and the plot gets cut off at the first and last grid points.

See Also
PS Lookup Table (1D) | PS Lookup Table (2D)

1 Model Construction

1-48



Thermal Liquid Models

• “Modeling Thermal Liquid Systems” on page 2-2
• “Thermal Liquid Library” on page 2-7
• “Thermal Liquid Modeling Framework” on page 2-11
• “Heat Transfer in Insulated Oil Pipeline” on page 2-15

2



Modeling Thermal Liquid Systems

In this section...
“When to Use Thermal Liquid Blocks” on page 2-2
“Modeling Workflow” on page 2-3
“Establish Model Requirements” on page 2-3
“Model Physical Components” on page 2-4
“Prepare Model for Analysis” on page 2-5
“Run Simulation” on page 2-5

When to Use Thermal Liquid Blocks

The Thermal Liquid library expands the fluid modeling capability of Simscape. With this
library, you can account for thermal effects in a fluid system. For example, you can model
the warming effect of viscous dissipation in a pipe. You can also account for the
temperature dependence of fluid properties, e.g., density and viscosity.

To decide whether Thermal Liquid blocks fit your modeling needs, consider the fluid
system you are trying to represent. Other Simscape blocks—e.g. Hydraulic or Gas—may
better suit your application. Assess the following:

• Number of phases

Is the fluid medium single phase or multiphase?
• Relevant phases

Is the fluid medium a gas, a liquid, or a multiphase mixture?
• Thermal effects

Does temperature change significantly in the time scale of the simulation? Are
thermal effects important for analysis? Are the temperature dependences of the liquid
properties important?

As a rule, use Thermal Liquid blocks for fluid systems in which a single-phase liquid
experiences significant temperature changes. For gaseous systems, use Gas blocks
instead. For isothermal liquid systems, use Hydraulic blocks.

2 Thermal Liquid Models

2-2



Modeling Workflow

The suggested workflow for Thermal Liquid models includes four steps:

1 Establish model requirements — Define the purpose and scope of the model. Then,
identify the relevant components and interactions in the model. Use this information
as a guide when building the model.

2 Model physical components — Determine the appropriate blocks for modeling the
relevant components and interactions. Then, add the blocks to the model canvas and
connect them according to the Simscape connection rules. Specify the block
parameters.

3 Prepare model for analysis — Add sensors to the model. Alternatively, configure the
model for Simscape data logging. Check the physical units of each sensed variable.

4 Run simulation — Configure the solver settings. Then, run the simulation. If
necessary, refine the model until you achieve the desired fidelity level.

Establish Model Requirements

The foundation of a good model is a clear understanding of its purpose and requirements.
What are you trying to accomplish with the model? What are the relevant components,
processes, and states? Determine what is essential and what is not. Start simple, using a
rough approximation of the physical system as a guide. Then, iteratively add detail to
reach the appropriate model fidelity for your application.

An insulated oil pipeline buried underground provides an example. As oil flows through
the pipeline, it experiences conductive heat losses due to the cooler pipeline
surroundings. Heat flows across three material layers—pipe wall, insulant, and soil—
causing oil temperature to drop. However, only conduction across soil and insulant layers
matter. A typical pipe wall is thin and conductive, and its effect on conductive heat loss is
minimal at best. Omitting this process simplifies the model and speeds up simulation.

You also must determine the dimensions and properties of each component. During
modeling, you specify these parameters in the Simscape blocks for the components.
Obtain the physical properties of the liquid medium. Manufacturer data sheets typically
provide this data. You can also use analytical expressions to define the physical property
lookup tables.

When modeling pipes, consider the impact that dynamic compressibility and flow inertia
have on the transient system behavior. If the time scale of an effect exceeds the

 Modeling Thermal Liquid Systems

2-3



simulation run time, the impact is usually negligible. During modeling, turn off
negligible effects to improve simulation speed. Characteristic time scales for dynamic
compressibility and flow inertia are approximately L/c and L/v, respectively, where:

• L is the length of the pipe.
• v is the mean flow velocity through the pipe.
• c is the speed of sound in the liquid medium.

If you are unsure whether an effect is relevant to your model, simulate the model with
and without that effect. Then, compare the two simulation results. If the difference is
substantial, leave that effect in place. The result is greater model fidelity at small time
scales, e.g., during transients associated with flow reversal in a pipe.

Model Physical Components
Start by adding a Thermal Liquid Settings (TL) block to the model canvas. Use this block
to provide the physical properties of the liquid medium. This block is not strictly
required, but without it the liquid properties are reset to their default values, given for
water. In the block dialog box, enter the physical property lookup tables that you
acquired during the planning stage.

Identify the appropriate blocks for representing the physical components and their
interactions. Components can be simple, requiring a single block, or custom, requiring
multiple blocks typically within a Subsystem block. Add the blocks to the model canvas
and connect them according to the Simscape connection rules.

The ssc_tl_hydraulic_fluid_warming example shows simple and custom
components. The Mass Flow Rate Source (TL) represents an ideal power source. It is a
simple component. The Double-acting cylinder subsystem block represents the
mechanical part of a hydraulic actuator. It contains two Translational Mechanical
Converter (TL) blocks and is a custom component.

Once you have connected the blocks, specify the relevant parameters. These include
dimensions, physical states, empirical correlation coefficients, and initial conditions. In
Pipe (TL), Rotational Mechanical Converter (TL), and Translational Mechanical
Converter (TL) blocks, select the appropriate setting for effects such as dynamic
compressibility and flow inertia.

Note For accurate simulation results, always replace the default parameter values with
data appropriate for your model.

2 Thermal Liquid Models

2-4



Prepare Model for Analysis

To analyze a model, you must set up that model for data collection. The simplest
approach is to add sensor blocks to the model. The Thermal Liquid library provides two
sensor block types: one for Through variables (mass and energy flow rates), the other for
Across variables (pressure and temperature). By using the PS-Simulink Converter block,
you can specify the physical units of the sensed variable.

An alternative approach is to use Simscape data logging. This approach, which uses
MATLAB commands instead of blocks, provides access to a broader range of model
variables and parameters. One example is the kinematic viscosity of the liquid medium
inside a pipeline segment. You can analyze this parameter using Simscape data logging
but not sensor blocks.

For an overview of Simscape data logging, see “About Simulation Data Logging” on page
11-2. For an example of how to plot logged data, see “Log and Plot Simulation Data” on
page 11-9.

Run Simulation

The final step in the modeling workflow is to simulate the model. Before running
simulation, check that the numerical solver is appropriate for your model. To do this, use
the Model Configuration Parameters dialog box.

For physical models, variable-step solvers such as ode15s typically perform best. Reduce
step sizes and tolerances for greater simulation accuracy. Increase them instead for
faster simulation.

Run the simulation. Plot simulation data from sensors and Simscape data logging, or
process it for further analysis. If necessary, refine the model. For example, correct
simulation issues or to improve model fidelity.

See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 2-15

 See Also

2-5



More About
• “Thermal Liquid Library” on page 2-7
• “Thermal Liquid Modeling Framework” on page 2-11

2 Thermal Liquid Models

2-6



Thermal Liquid Library
In this section...
“Why Use Thermal Liquid Blocks?” on page 2-7
“Representing Thermal Liquid Components” on page 2-7
“Specifying Thermal Liquid Medium” on page 2-9
“Modeling Multidomain Systems” on page 2-9

Why Use Thermal Liquid Blocks?

The thermal behavior of liquid systems is of interest in many engineering applications.
Liquids can store energy and release it back to their surroundings, often doing work in
the process. Oil flow through an underground pipeline and hydraulic fluid flow in an
aircraft actuator are two examples.

When temperature fluctuations are negligible, liquids behave as isothermal fluids, which
simplifies the modeling process. However, when detailed thermal analysis is a goal, or
when temperature fluctuations are significant, this assumption is no longer suitable.

The Thermal Liquid library provides a modeling tool that you can use to analyze the
thermal behavior of thermal liquid systems. Three featured examples show some
applications well-suited for Thermal Liquid modeling:

• ssc_tl_oil_pipeline — Model oil temperature along an insulated underground
pipeline.

• ssc_tl_hydraulic_fluid_warming — Model hydraulic fluid warming due to
viscous dissipation inside a hydraulic actuator.

• ssc_tl_water_hammer — Model the water hammer effect due to a fast-turning
hydraulic valve.

Representing Thermal Liquid Components

Thermal liquid systems can range in complexity from basic to highly specialized. To
model a basic system, simple components often suffice. These are components such as
chambers, pipes, pumps, and the liquid medium itself. Simple components are often
industry independent and can be modeled using a single Thermal Liquid block. For
example, you can model a pipeline segment using a single Pipe (TL) block.

 Thermal Liquid Library

2-7



To model a specialized system, generally you use custom components. These are
components that you cannot represent by a single Thermal Liquid block. The five-way
directional control valve in the ssc_tl_hydraulic_fluid_warming example is one
such component. Custom components are often industry specific and must be modeled by
grouping Thermal Liquid blocks into more complex subsystems.

The Thermal Liquid library shares the structure of other Simscape Foundation libraries.
Four sublibraries supply the Thermal Liquid blocks: Elements, Sources, Sensors, and
Utilities. With these sublibraries you can represent the most common components of a
thermal liquid system. The table summarizes these components.

Component Type Description Thermal Liquid Blocks
Liquid storage Store liquid in chambers or

reservoirs.
Constant Volume Chamber
(TL), Reservoir (TL),
Controlled Reservoir (TL)

Liquid transport Transport thermal liquid
through closed conduits
such as pipes.

Pipe (TL)

Flow restriction Restrict thermal liquid flow,
e.g., due to valves or
fittings.

Local Restriction (TL),
Variable Local Restriction
(TL)

Mechanical interfaces Interface thermal liquid and
mechanical systems, e.g., to
convert liquid mechanical
energy into useful work.

Translational Mechanical
Converter (TL), Rotational
Mechanical Converter (TL)

Power sources Provide a power source to
the thermal liquid system,
e.g. , pressure difference or
mass flow rate.

Mass Flow Rate Source
(TL), Pressure Source (TL),
Controlled Mass Flow Rate
Source (TL), Controlled
Pressure Source (TL)

Sensors Output measurement data
for dynamic variables such
as mass flow rate, energy
flow rate, pressure, and
temperature.

Pressure & Temperature
Sensor (TL), Mass & Energy
Flow Rate Sensor (TL),
Thermodynamic Properties
Sensor (TL), Volumetric
Flow Rate Sensor (TL)

2 Thermal Liquid Models

2-8



Component Type Description Thermal Liquid Blocks
Thermal liquid Specify thermodynamic

properties and pressure-
temperature validity region
of thermal liquid medium.

Thermal Liquid Settings
(TL)

Specifying Thermal Liquid Medium

The Thermal Liquid Settings (TL) block specifies the thermodynamic properties of the
liquid medium. These properties are assumed functions of both pressure and
temperature. This assumption boosts model fidelity, especially in models in which
pressure, temperature, or both, vary widely.

The block accepts two-way lookup tables as input. These tables provide the different
thermodynamic property values at discrete pressures and temperatures. You can
populate these tables using empirical data from product data sheets or values calculated
from analytical expressions.

Modeling Multidomain Systems

Thermal Liquid blocks can contain different types of conserving ports. These ports
include not only Thermal Liquid conserving ports but also thermal and mechanical
conserving ports. By using these ports, you can interface a Thermal Liquid subsystem
with thermal and mechanical subsystems.

For instance, you can use the thermal conserving port of a Pipe (TL) block to model
conductive heat transfer through a pipe wall. Oil pipeline modeling is one application.
The example ssc_tl_oil_pipeline shows this approach.

Similarly, you can use the translational mechanical conserving ports of a Translational
Mechanical Converter (TL) block to convert hydraulic pressure in a thermal liquid
system into a mechanical actuation force. Hydraulic actuator modeling is one application.
The example ssc_tl_hydraulic_fluid_warming shows this approach.

The table lists the Thermal Liquid blocks that have thermal or mechanical conserving
ports. You can use these blocks to create a multidomain model containing thermal liquid,
thermal, and mechanical subsystems.

 Thermal Liquid Library

2-9



Thermal Liquid Block Thermal Conserving Port Mechanical Conserving Port
Constant Volume Chamber
(TL)

✓ ✗

Pipe (TL) ✓ ✗
Rotational Mechanical
Converter (TL)

✓ ✓

Translational Mechanical
Converter (TL)

✓ ✓

See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 2-15

More About
• “Modeling Thermal Liquid Systems” on page 2-2
• “Thermal Liquid Modeling Framework” on page 2-11

2 Thermal Liquid Models

2-10



Thermal Liquid Modeling Framework

In this section...
“How Blocks Represent Components” on page 2-11
“How Ports Represent Interfaces” on page 2-12
“Full Flux Scheme” on page 2-13

How Blocks Represent Components

Thermal Liquid models are based on the finite volume method. This method discretizes a
thermal liquid system into multiple control volumes that interact via shared interfaces.
An oil pipeline system is one example: you can model this system as a set of pipeline
segments that connect serially along the pipeline length.

Discretization of Pipeline System

A control volume can represent a thermal liquid component, such as an oil pipeline, or a
part of a component, such as a pipeline segment. You can discretize a thermal liquid
system and its components as finely as you need, for example to increase simulation
accuracy. However, the finer the discretization, the greater the model complexity—and
the slower the simulation.

Thermal Liquid blocks represent the control volume of a component using an internal
node. This node provides the liquid pressure and temperature inside the component. The
node is not visible, but you can access its parameters and variables using Simscape data
logging. For more information, see “About Simulation Data Logging” on page 11-2.

 Thermal Liquid Modeling Framework

2-11



Simscape Nodes in Pipe (TL) Block

Two physical principles govern the dynamic evolution of liquid pressure and temperature
at the internal node of a control volume: mass conservation and energy conservation.
Pressure and temperature computation is carried out for the control volume surrounding
the internal node. This control volume is the total volume of the thermal liquid
component the block represents.

A second set of nodes represents the interfaces through which a finite volume can
interact with its neighbors. These nodes are visible as Simscape conserving ports, of
which Thermal Liquid conserving ports are the most important. By allowing the
exchange of mass, momentum, and energy between adjacent liquid volumes, Thermal
Liquid conserving ports govern the dynamic evolution of the finite volume as it tends to a
steady state.

How Ports Represent Interfaces

Thermal Liquid conserving ports provide the liquid pressure and temperature at the
interfaces they represent. They also provide the flow rates of mass and heat, which
govern the interactions between thermal liquid components. Pressure and temperature
are the Across variables of the Thermal Liquid domain, while the flow rates are the
Through variables.

Two physical principles govern the mass and heat flow rates through a Thermal Liquid
conserving port: momentum conservation and energy conservation. The mass flow rate at
a port is computed from the momentum conservation principle. The heat flow rate at a
port is computed from the thermal energy conservation principle.

2 Thermal Liquid Models

2-12



The flow rate computations are carried out for half the control volume of a thermal liquid
component. The half control volume is bounded on one end by the interface the port
represents, and on another end by a parallel surface passing through the control volume
centroid.

The figure shows the half control volume for flow rate computations at interface A of a
pipeline segment. Interface A corresponds to Thermal Liquid conserving port A of a Pipe
(TL) block. Node C corresponds to the internal node of the block, which is coincident with
the control volume centroid.

Half Control Volume for Flow Rate Calculations

Full Flux Scheme

Blocks in the Thermal Liquid library implement a full flux scheme. Using this scheme,
the net heat flux through a Thermal Liquid conserving port contains both convective and
conductive flux contributions. By including thermal conduction in the flow direction,
Thermal Liquid blocks provide more realistic simulation of the physical system they
represent.

Other advantages of the full flux scheme include enhanced simulation robustness of
thermal liquid models. This robustness becomes relevant in models where the conductive
flux contribution can be dominant. Examples include instances of low mass flow rates
and flow reversal, during which the convective flux becomes negligible or vanishes
altogether.

 Thermal Liquid Modeling Framework

2-13



See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 2-15

More About
• “Modeling Thermal Liquid Systems” on page 2-2
• “Thermal Liquid Library” on page 2-7

2 Thermal Liquid Models

2-14



Heat Transfer in Insulated Oil Pipeline
In this section...
“Oil Pipelines” on page 2-15
“Modeling Considerations” on page 2-16
“Simscape Model” on page 2-18
“Run Simulation” on page 2-20
“Run Optimization Script” on page 2-27

Oil Pipelines
Temperature plays an important role in oil pipeline design. Below the so-called cloud
point, paraffin waxes precipitate from crude oil and start to accumulate along the pipe
wall interior. The waxy deposits restrict oil flow, increasing the power requirements of
the pipeline. At still-lower temperatures—below the pour point of oil—these crystals
become so numerous that, if allowed to quiesce, oil becomes semisolid.

In cold climates, conductive heat losses through the pipe wall can be significant. To keep
oil in its favorable temperature range, pipelines include some temperature control
measures. Heating stations placed at intervals along the pipeline help to warm the oil.
An insulant liner covering the pipe wall interior helps to retard the cooling rate of the oil.

Viscous dissipation provides an additional heat source. As adjacent parcels of oil flow
against each other, they experience energy losses that appear in the form of heat. The
warming effect is small, but sufficient to at least partially offset the conductive heat
losses that occur through the insulant liner.

At a certain insulation thickness, viscous dissipation exactly balances the conductive
heat loss. Oil stays at its ideal temperature throughout the pipeline length and the need

 Heat Transfer in Insulated Oil Pipeline

2-15



for heating stations is reduced. From a design standpoint, this insulation thickness is
optimal.

In this example, you simulate an insulated oil pipeline segment. You then run an
optimization script to determine the optimal insulation thickness. This example is based
on Simscape model ssc_tl_oil_pipeline.

Modeling Considerations

The physical system in this example is an oil pipeline segment. Insulation lines the pipe
wall interior, while soil covers the pipe wall exterior, retarding conductive heat loss. The
simplifying assumption is made that the physical system is symmetric about the pipe
center line.

Flow through the pipeline segment is assumed fully developed: the velocity profile of the
flowing oil remains constant along the pipeline length. In addition, oil is assumed
Newtonian and compressible: shear stress is proportional to the shear strain, and mass
density varies with both temperature and pressure.

Oil enters the pipeline segment at a fixed temperature, TUpstream, with a fixed mass
flow rate, Vdot * rho0, where:

• Vdot is the volumetric flow rate of oil through the pipe.
• rho0 is the mass density of oil entering the pipeline segment.

2 Thermal Liquid Models

2-16



Inside the pipeline segment, viscous dissipation heats the flowing oil, while thermal
conduction through the pipe wall cools it. The balance between the two processes governs
the temperature of oil exiting the pipeline segment.

The amount of heat gained through viscous dissipation depends partly on oil viscosity
and mass flow rate. The greater these quantities are, the greater the viscous heat gain is
—and the warmer the oil tends to get. The amount of heat lost via thermal conduction
depends partly on the thermal resistances of the insulation, pipe wall, and soil layer. The
smaller the thermal resistances are, the greater the conductive heat loss is—and the
cooler the oil tends to get.

Using an electrical circuit analogy, the combined thermal resistance of three material
layers arranged in series equals the sum of the individual thermal resistances:

Rcombined = Rwall + Rins. + Rsoil

Assuming the pipe wall is thin and its material a good thermal conductor, you can safely
ignore the thermal resistance of the pipe wall. The combined thermal resistance is then
simply the sum of the insulation and soil contributions, Rins. and Rsoil.

The thermal resistance of the insulation layer is directly proportional to its thickness,
(D2-D1)/2, and inversely proportional to its thermal conductivity, kInsulant. Likewise,
the thermal resistance of the soil layer is directly proportional to its thickness, z, and
inversely proportional to its thermal conductivity, kSoil.

The figure shows the relevant dimensions of the pipeline segment. Variable names match
those specified in the model. The inner insulation diameter, D1, is also the hydraulic
diameter of the pipeline segment.

 Heat Transfer in Insulated Oil Pipeline

2-17



Simscape Model

The Simscape model ssc_tl_oil_pipeline represents an insulated oil pipeline
segment buried underground. To open this model, at the MATLAB command prompt,
enter ssc_tl_oil_pipeline. The figure shows the model.

2 Thermal Liquid Models

2-18



The Pipe (TL) block represents the physical system in this example, i.e., the oil pipeline
segment. Port A represents its inlet and port B its outlet. Port W represents thermal
conduction through the pipe wall. The block accounts for viscous heating.

The Mass Flow Rate Source (TL) block provides the flow rate through the pipe. The From
upstream segment block acts as a temperature source for the pipe inlet, while the To
downstream segment block acts as a temperature sink at the pipe outlet.

The Conduction through insulant and Conduction through soil blocks represent thermal
conduction through insulant and soil layers, respectively. These blocks appear in the
Simscape Thermal library as Conductive Heat Transfer. The Soil subsystem block
provides the temperature boundary condition at the soil surface.

The Thermal Liquid Settings (TL) block provides the physical properties of the oil,
expressed as two-sided lookup tables containing the temperature and pressure
dependence of the properties. The table summarizes these blocks.

 Heat Transfer in Insulated Oil Pipeline

2-19



Block Description
Pipe (TL) Pipeline segment
Conduction through insulant Insulant thermal conduction
Conduction through soil Soil thermal conduction
Soil (Subsystem) Soil temperature
From upstream segment Pipe inlet temperature sink
To downstream segment Pipe outlet temperature sink
Mass Flow Rate Source (TL) Oil mass flow rate
Thermal Liquid Settings (TL) Oil thermodynamic properties

Run Simulation

To analyze the performance of the oil pipeline segment, simulate the model. The
Comparison scope plots the upstream and downstream oil temperatures. Open this scope.
The insulation thickness is near its optimal value, resulting in only a small temperature
change over a 1000 meter length. At a rate of ~0.020 K/km, oil temperature changes
approximately 2 K over a 100 kilometer length.

Plot Physical Properties Using Data Logging

By using Simscape data logging, you can plot the physical properties of the oil as a
function of simulation time. Such a plot clearly shows any variability in the value of a

2 Thermal Liquid Models

2-20



physical property. One example is the kinematic viscosity of oil in the pipeline segment,
represented by the Pipe (TL) block.

1 At the MATLAB command line, enter simlog.Pipe_TL.print.

In the data tree, the kinematic viscosity nu appears under the node pipe_model,
which itself appears under the node simlog.Pipe_TL. The logging object for the
kinematic viscosity of oil in the pipe, then, is simlog.Pipe_TL.pipe_model.nu.

 Heat Transfer in Insulated Oil Pipeline

2-21



2 Thermal Liquid Models

2-22



2 At the MATLAB command line, enter
simscape.logging.plot({simlog.Pipe_TL.pipe_model.nu}).

As expected, the kinematic viscosity remains approximately constant throughout the
simulation, reflecting the minimal temperature changes that occur in the oil.

Note For more information about Simscape logging, see “About Simulation Data
Logging” on page 11-2.

Simulate Effects of Changing Insulation Diameter

Experiment with different values for the insulation inner diameter. By varying this
parameter, you offset the balance between viscous dissipation, which heats the oil, and
thermal conduction, which cools the oil.

1 Open Model Explorer.
2 In the Model Hierarchy pane, select Base Workspace.
3 In the Contents pane, click the value of parameter D1.
4 Enter 0.20.

 Heat Transfer in Insulated Oil Pipeline

2-23



By reducing the inner diameter of the insulation layer to 0.20, you increase the
insulation thickness, slowing down heat loss through the pipe wall via thermal
conduction. Run the simulation. Then, open the Comparison scope and autoscale to view
full plot.

The new plot shows an oil temperature at the pipe outlet (top curve) that significantly
exceeds that at the pipe inlet (bottom line). Viscous dissipation now dominates the
thermal energy balance in the pipeline segment. The new insulation thickness poses a
design problem: in a long pipeline, a 1.1 K/km heating rate can raise the oil temperature
substantially at the receiving end of the pipeline.

Plotting the kinematic viscosity as a function of time shows that its variability is now
quite significant also. At the MATLAB command line, enter the logging command:
simscape.logging.plot({simlog.Pipe_TL.pipe_model.nu}).

2 Thermal Liquid Models

2-24



Try increasing the inner diameter of the insulation layer, D1, to 0.55. By increasing this
value, you decrease the insulation thickness, accelerating heat loss through the pipe wall
via thermal conduction. Then, run the simulation. Open the Comparison scope and
autoscale to view the full plot.

 Heat Transfer in Insulated Oil Pipeline

2-25



The resulting plot shows that the oil temperature at the pipe outlet is now significantly
lower than that at the pipe inlet. Thermal conduction clearly dominates the thermal
energy balance in the pipeline segment. This insulation thickness also poses a design
issue: at a rate of 0.25K/km, oil flowing through a long pipeline will cool down
substantially.

Plot the kinematic viscosity as a function of time using Simscape logging. Because the
temperature change is now more modest, changes in viscosity are less significant.

2 Thermal Liquid Models

2-26



Run Optimization Script

The model provides an optimization script that you can run to determine the optimal
inner diameter of the pipe insulation, D1. The script iterates the model simulation at
different D1 values, plotting the rates of viscous warming and conductive cooling against
each other. The intersection point between the two curves identifies the optimal
insulation thickness for the model:

1 In the model window, double-click Run optimization script.

 Heat Transfer in Insulated Oil Pipeline

2-27



2 In the plot that opens, visually determine the horizontal-axis value for the
intersection point between the two curves.

The optimal inner diameter of the insulation layer is 0.37 m. Update parameter D1 to
this value:

1 Open Model Explorer.
2 In the Model Hierarchy pane, click Base Workspace.
3 In the Contents pane, click the value of D1.
4 Enter 0.37.

Now, run the simulation. Open the Comparison scope and autoscale to view the full plot.
The temperature difference between the inlet and the outlet is negligible.

2 Thermal Liquid Models

2-28



See Also

More About
• “Modeling Thermal Liquid Systems” on page 2-2
• “Thermal Liquid Library” on page 2-7
• “Thermal Liquid Modeling Framework” on page 2-11

 See Also

2-29





Two-Phase Fluid Models

3



Manually Generate Fluid Property Tables

In this section...
“Fluid Property Tables” on page 3-2
“Steps for Generating Property Tables” on page 3-3
“Before Generating Property Tables” on page 3-3
“Create Fluid Property Functions” on page 3-3
“Set Property Table Criteria” on page 3-4
“Create Pressure-Normalized Internal Energy Grids” on page 3-5
“Map Grids Onto Pressure-Specific Internal Energy Space” on page 3-5
“Obtain Fluid Properties at Grid Points” on page 3-6
“Visualize Grids” on page 3-7

Fluid Property Tables

Fluid property tables provide the basic inputs to the Two-Phase Fluid Properties (2P)
block. If you have REFPROP software by the National Institute of Standards and
Technology installed, you can automatically generate these tables using the
twoPhaseFluidTables function. If you obtain the fluid properties from a different
source, such as CoolProp software, you can still generate the tables using a MATLAB
script. This tutorial shows how to create a script to generate the fluid temperature
tables.

The tables must provide the fluid properties at discrete pressures and normalized
internal energies. The pressures must correspond to the table columns and the
normalized internal energies to the table rows. Setting pressure and normalized internal
energy as the independent variables enables you to specify the liquid and vapor phase
property tables on separate rectangular grids using MATLAB matrices.

The figure shows two fluid property grids in pressure-specific internal energy space (left)
and pressure-normalized internal energy space (right). If you obtain the fluid property
tables on a pressure-specific internal energy grid, you must transform that grid into its
pressure-normalized internal energy equivalent. In this tutorial, this transformation is
handled by the MATLAB script that you create.

3 Two-Phase Fluid Models

3-2



Steps for Generating Property Tables
The MATLAB script that you create in this tutorial performs the following tasks:

• Define property table criteria, including dimensions and pressure-specific internal
energy domain.

• Create rectangular grids in pressure-normalized internal energy space.
• Map the grids onto pressure-specific internal energy space.
• Obtain the fluid properties on the pressure-specific internal energy grids.

Before Generating Property Tables
You must obtain fluid property data in pressure-specific internal energy space, e.g.,
through direct calculation, from a proprietary database, or from a third-party source. In
this tutorial, you create four MATLAB functions to provide example property data. In a
real application, you must replace these functions with equivalent functions written to
access real property data.

Create Fluid Property Functions
Create the following MATLAB functions. These functions provide the example property
data you use in this tutorial. Ensure that the function files are on the MATLAB path.
Use the function names and code shown:

• Name — liquidTemperature
function T = liquidTemperature(u, p) 
% Returns artificial temperature data as a function 

 Manually Generate Fluid Property Tables

3-3



% of specific internal energy and pressure.
T = 300 + 0.2*u - 0.08*p;

• Name — vaporTemperature
function T = vaporTemperature(u, p)
% Returns artificial temperature data as a function 
% of specific internal energy and pressure.
T = -1000 + 0.6*u + 5*p;

• Name — saturatedLiquidInternalEnergy
function u = saturatedLiquidInternalEnergy(p)
% Returns artificial data for saturated liquid specific
% internal energy as a function of pressure.
u = sqrt(p)*400 + 150;

• Name — saturatedVaporInternalEnergy

function u = saturatedVaporInternalEnergy(p)
% Returns artificial data for saturated vapor specific
% internal energy as a function of pressure.
u = -3*p.^2 + 40*p + 2500;

Set Property Table Criteria

Start a new MATLAB script. Save the script in the same folder as the MATLAB
functions you created to generate the example fluid property data. In the script, define
the criteria for the property tables. Do this by entering the following code for the table
dimensions and pressure-specific internal energy valid ranges:

% Number of rows in the liquid property tables
mLiquid = 25;
% Number of rows in the vapor property tables
mVapor = 25;
% Number of columns in the liquid and vapor property tables
n = 60;

% Minimum specific internal energy, kJ/kg
uMin = 30;
% Maximum specific internal energy, kJ/kg
uMax = 4000;
% Minimum pressure, MPa
pMin = 0.01;
% Maximum pressure, MPa

3 Two-Phase Fluid Models

3-4



pMax = 15;

% Store minimum and maximum values in structure fluidTables
fluidTables.uMin = uMin;
fluidTables.uMax = uMax;
fluidTables.pMin = pMin;
fluidTables.pMax = pMax;

Create Pressure-Normalized Internal Energy Grids
Define the pressure and normalized internal energy vectors for the grid. These vectors
provide the discrete pressure and normalized internal energy values associated with each
grid point. The pressure vector is logarithmically spaced due to the wide pressure range
considered in this example. However, you can use any type of spacing that suits your
data. In your MATLAB script, add this code:
% Pressure vector, logarithmically spaced
fluidTables.p = logspace(log10(pMin), log10(pMax), n);

% Normalized internal energy vectors, linearly spaced
fluidTables.liquid.unorm = linspace(-1, 0, mLiquid)';
fluidTables.vapor.unorm = linspace(1, 2, mVapor)';

Map Grids Onto Pressure-Specific Internal Energy Space
Obtain the saturated liquid and vapor specific internal energies as functions of pressure.
The saturation internal energies enable you to map the normalized internal energy
vectors into equivalent vectors in specific internal energy space. In your MATLAB script,
add this code:
% Initialize the saturation internal energies of the liquid and vapor phases
fluidTables.liquid.u_sat = zeros(1, n);
fluidTables.vapor.u_sat = zeros(1, n);

% Obtain the saturation internal energies at the pressure vector values
for j = 1 : n
    fluidTables.liquid.u_sat(j) = saturatedLiquidInternalEnergy(fluidTables.p(j));
    fluidTables.vapor.u_sat(j) = saturatedVaporInternalEnergy(fluidTables.p(j));
end

This code calls two functions written to generate example data. Before using this code in
a real application, you must replace the functions with equivalent expressions capable of
accessing real data. The functions you must replace are:

 Manually Generate Fluid Property Tables

3-5



• saturatedLiquidInternalEnergy
• saturatedVaporInternalEnergy

Map the normalized internal energy vectors onto equivalent specific internal energy
vectors. In your MATLAB script, add this code:

% Map pressure-specific internal energy grid onto
% pressure-normalized internal energy space
fluidTables.liquid.u = (fluidTables.liquid.unorm + 1)*...
(fluidTables.liquid.u_sat - uMin) + uMin;
fluidTables.vapor.u = (fluidTables.vapor.unorm - 2)*...
(uMax - fluidTables.vapor.u_sat) + uMax;

Obtain Fluid Properties at Grid Points

You can now obtain the fluid properties at each grid point. The following code shows how
to generate the temperature tables for the liquid and vapor phases. Use a similar
approach to generate the remaining fluid property tables. In your MATLAB script, add
this code:

% Obtain temperature tables for the liquid and vapor phases
for j = 1 : n
     for i = 1 : mLiquid
        fluidTables.liquid.T(i,j) = ...
liquidTemperature(fluidTables.liquid.u(i,j), fluidTables.p(j));
    end
    for i = 1 : mVapor
        fluidTables.vapor.T(i,j) = ...
vaporTemperature(fluidTables.vapor.u(i,j), fluidTables.p(j));
    end
end

This code calls two functions written to generate example data. Before using this code in
a real application, you must replace the functions with equivalent expressions capable of
accessing real data. The functions you must replace are:

• liquidTemperature
• vaporTemperature

To view the temperature tables generated, first run the script. Then, at the MATLAB
command prompt, enter fluidTables. MATLAB lists the contents of the fluidTables
structure array.

3 Two-Phase Fluid Models

3-6



fluidTables =

      uMin: 30
      uMax: 4000
      pMin: 0.0100
      pMax: 15
         p: [1x20 double]
    liquid: [1x1 struct]
     vapor: [1x1 struct]

To list the property tables stored in the liquidsubstructure, at the MATLAB command
prompt enter fluidTables.liquid.

  305.9992  305.9988  305.9983  305.9975  ...
  309.5548  309.7430  309.9711  310.2475  ...
  313.1103  313.4872  313.9440  314.4976  ...
  316.6659  317.2314  317.9169  318.747  ...
  ...       

Visualize Grids
To visualize the original grid in pressure-normalized internal energy space, at the
MATLAB command prompt enter this code:

% Define p and unorm matrices with the grid
% point coordinates
pLiquid = repmat(fluidTables.p, mLiquid, 1);
pVapor = repmat(fluidTables.p, mVapor, 1);

unormLiquid = repmat(fluidTables.liquid.unorm, 1, n);
unormVapor = repmat(fluidTables.vapor.unorm, 1, n);

% Plot grid
figure;
hold on;

plot(unormLiquid, pLiquid, 'b.');
plot(unormVapor, pVapor, 'b.');

plot(zeros(1, n), fluidTables.p, 'k-');
plot(ones(1, n), fluidTables.p, 'k-');

hold off;
set(gca, 'yscale', 'log');

 Manually Generate Fluid Property Tables

3-7



xlabel('Normalized Internal Energy');
ylabel('Pressure');
title('Grid in Normalized Internal Energy');

A figure opens with the pressure-normalized internal energy grid.

To visualize the transformed grid in pressure-specific internal energy space, at the
MATLAB command prompt enter this code:

% Define horizontal and vertical axes

% Plot grid
figure;
hold on;

plot(fluidTables.liquid.u, pLiquid, 'b.');
plot(fluidTables.vapor.u, pVapor, 'b.');

plot(fluidtables.liquid.u_sat, fluidTables.p, 'k-');
plot(fluidtables.vapor.u_sat, fluidTables.p, 'k-');

hold off;
set(gca, 'yscale', 'log');

3 Two-Phase Fluid Models

3-8



xlabel('Specific Internal Energy');
ylabel('Pressure');
title('Grid in Specific Internal Energy'); 

A figure opens with the pressure-specific internal energy grid.

 Manually Generate Fluid Property Tables

3-9





Gas System Models

• “Modeling Gas Systems” on page 4-2
• “Simple Gas Model” on page 4-14
• “Change Flow Boundary Conditions” on page 4-20

4



Modeling Gas Systems

In this section...
“Intended Applications” on page 4-2
“Network Variables” on page 4-2
“Gas Property Models” on page 4-3
“Blocks with Gas Volume” on page 4-5
“Reference Node and Grounding Rules” on page 4-5
“Initial Conditions for Blocks with Finite Gas Volume” on page 4-6
“Choked Flow” on page 4-7
“Flow Reversal” on page 4-13

Intended Applications

The Gas library contains basic elements, such as orifices, chambers, and pneumatic-
mechanical converters, as well as sensors and sources. Use these blocks to model gas
systems, for applications such as:

• Pneumatic actuation of mechanical systems
• Natural gas transport through pipe networks
• Gas turbines for power generation
• Air cooling of thermal components

You specify the gas properties in the connected loop by using the Gas Properties (G)
block. This block lets you choose between three idealization levels: perfect gas,
semiperfect gas, or real gas (see “Gas Property Models” on page 4-3).

Network Variables

The Across variables are pressure and temperature, and the Through variables are mass
flow rate and energy flow rate. Note that these choices result in a pseudo-bond graph,
because the product of pressure and mass flow rate is not power.

4 Gas System Models

4-2



Gas Property Models

The Gas library supports perfect gas, semiperfect gas, and real gas within the same gas
domain in order to cover a wide range of modeling requirements. The three gas property
models provide trade-offs between simulation speed and accuracy. They also enable the
incremental workflow: you start with a simple model, which requires minimal
information about the working gas, and then build upon the model when more detailed
gas property data becomes available.

You select the gas property model by using the Gas Properties (G) block, which specifies
the gas properties in the connected circuit.

The following table summarizes the different assumptions for each gas property model.

• Thermal equation of state indicates the relationship of density with temperature and
pressure.

• Caloric equation of state indicates the relationship of specific heat capacity with
temperature and pressure.

• Transport properties indicate the relationship between dynamic viscosity and thermal
conductivity with temperature and pressure.

Gas Property Model Thermal Equation of
State

Caloric Equation of
State

Transport Properties

Perfect Ideal gas law Constant Constant
Semiperfect Ideal gas law 1-D table lookup by

temperature
1-D table lookup by
temperature

Real 2-D table lookup by
temperature and
pressure

2-D table lookup by
temperature and
pressure

2-D table lookup by
temperature and
pressure

The ideal gas law is implemented in the Simscape Foundation Gas library as

p = ZρRT

where:

• p is the pressure.
• Z is the compressibility factor.

 Modeling Gas Systems

4-3



• R is the specific gas constant.
• T is the temperature.

The compressibility factor, Z, is typically a function of pressure and temperature. It
accounts for the deviation from ideal gas behavior. The gas is ideal when Z = 1. In the
perfect and semiperfect gas property models, Z must be constant but it does not have to
be equal to 1. For example, if you are modeling a nonideal gas (Z ≠ 1) but the
temperature and pressure of the system do not vary significantly, you can use the perfect
gas model and specify an appropriate value of Z. The following table lists the
compressibility factor Z for various gases at 293.15 K and 0.101325 MPa:
Gas Compressibility Factor
Dry Air 0.99962
Carbon Dioxide 0.99467
Oxygen 0.99930
Hydrogen 1.00060
Helium 1.00049
Methane 0.99814
Natural Gas 0.99797
Ammonia 0.98871
R-134a 0.97814

Using the perfect gas model, with the constant value of Z adjusted based on the type of
gas and the operating conditions, lets you avoid the additional complexity and
computational cost of moving to the semiperfect or real gas property model.

The perfect gas property model is a good starting choice when modeling a gas network
because it is simple, computationally efficient, and requires limited information about
the working gas. It is correct for monatomic gases and, typically, it is sufficiently
accurate for gases such as dry air, carbon dioxide, oxygen, hydrogen, helium, methane,
natural gas, and so on, at standard conditions.

When the gas network is operating near the saturation boundary or is operating over a
very wide temperature range, the working gas can exhibit mild nonideal behavior. In this
case, after successfully simulating the gas network with the perfect gas property model,
consider switching to the semiperfect gas property model.

4 Gas System Models

4-4



Finally, consider switching to the real gas property model if the working gas is expected
to exhibit strongly nonideal behavior, such as heavy gases with large molecules. This
model is the most expensive in terms of computational cost and requires detailed
information about the working gas, because it uses 2-D interpolation for all properties.

Blocks with Gas Volume
Components in the gas domain are modeled using control volumes. The control volume
encompasses the gas inside the component and separates it from the surrounding
environment and other components. Gas flows and heat flows across the control surface
are represented by ports. The gas volume inside the component is represented using an
internal node, which provides the gas pressure and temperature inside the component.
This internal node is not visible, but you can access its parameters and variables using
Simscape™ data logging. For more information, see About Simulation Data Logging on
page 11-2.

The following blocks in the Gas library are modeled as components with a gas volume. In
the case of Controlled Reservoir (G) and Reservoir (G), the volume is assumed to be
infinitely large.
Block Gas Volume
Constant Volume Chamber (G) Finite
Pipe (G) Finite
Rotational Mechanical Converter (G) Finite
Translational Mechanical Converter (G) Finite
Reservoir (G) Infinite
Controlled Reservoir (G) Infinite

Other components have relatively small gas volumes, so that gas entering the component
spends negligible time inside the component before exiting. These components are
considered quasi-steady-state and they do not have an internal node.

Reference Node and Grounding Rules
Unlike other domains, where each topologically distinct circuit within a domain must
contain at least one reference block, gas networks have different grounding rules.

Blocks with a gas volume contain an internal node, which provides the gas pressure and
temperature inside the component and therefore serves as a reference node for the gas

 Modeling Gas Systems

4-5



network. Each connected gas network must have at least one reference node. This means
that each connected gas network must have at least one of the blocks listed in “Blocks
with Gas Volume” on page 4-5. In other words, a gas network that contains no gas
volume is an invalid gas network.

The Foundation Gas library contains the Absolute Reference (G) block but, unlike other
domains, you do not use it for grounding gas circuits. The purpose of the Absolute
Reference (G) block is to provide a reference for the Pressure & Temperature Sensor (G).
If you use the Absolute Reference (G) block elsewhere in a gas network, it will trigger a
simulation assertion because gas pressure and temperature cannot be at absolute zero.

Initial Conditions for Blocks with Finite Gas Volume
This section discusses the specific initialization requirements for blocks modeled with
finite gas volume. These blocks are listed in “Blocks with Gas Volume” on page 4-5.

The state of the gas volume evolves dynamically based on interactions with connected
blocks via mass and energy flows. The time constants depend on the compressibility and
thermal capacity of the gas volume.

The state of the gas volume is represented by differential variables at the internal node
of the block. As differential variables, they require initial conditions to be specified prior
to the start of simulation. The dialog box of each block modeled with finite gas volume
has a Variables tab, which lists three variables:

• Pressure of gas volume
• Temperature of gas volume
• Density of gas volume

By default, Pressure of gas volume and Temperature of gas volume have high
priority, with target values equal to the standard condition (0.101325 MPa and 293.15
K). You can adjust the target values to represent the appropriate initial state of the gas
volume for the block. Density of gas volume has the default priority None because only
the initial conditions of two of the three variables are needed to completely determine the
initial state of the gas volume. If desired, an alternative way to specify the initial
conditions is to change Density of gas volume to high priority with an appropriate
target value, and then change either Pressure of gas volume or Temperature of gas
volume to a priority of none.

It is important that only two of the three variables have their priorities set to High for
each block with a finite gas volume. Placing high-priority constraints on all three

4 Gas System Models

4-6



variables results in over-specification, with the solver unable to find an initialization
solution that satisfies the desired initial values. Conversely, placing high-priority
constraint only on one variable makes the system under-specified, and the solver might
resolve the variables with arbitrary and unexpected initial values. For more information
on variable initialization and dealing with over-specification, see “Initialize Variables for
a Mass-Spring-Damper System” on page 6-7.

In blocks that are modeled with an infinitely large gas volume, the state of the gas
volume is assumed quasisteady and there is no need to specify an initial condition.

Choked Flow

Gas flow through Local Restriction (G), Variable Local Restriction (G), or Pipe (G) blocks
can become choked. Choking occurs when the flow velocity reaches the local speed of
sound. When the flow is choked, the velocity at the point of choking cannot increase any
further. However, the mass flow rate can still increase if the density of the gas increases.
This can be achieved, for example, by increasing the pressure upstream of the point of
choking. The effect of choking on a gas network is that the mass flow rate through the
branch containing the choked block depends completely on the upstream pressure and
temperature. As long as the choking condition is maintained, this choked mass flow rate
is independent of any changes occurring in the pressure downstream.

The following model illustrates the choked flow. In this model, the Ramp block has a
slope of 0.005 and the start time of 10. All other blocks have default parameter values.
Simulation time is 50 s. When you simulate the model, the pressure at port A of the
Local Restriction (G) block increases linearly from atmospheric pressure, starting at 10 s.
The pressure at port B is fixed at atmospheric pressure.

 Modeling Gas Systems

4-7



The following illustration shows the logged simulation data for the Local Restriction (G)
block. The Mach number at the restriction (Mach_R) reaches 1 at around 20 s,
indicating that the flow is choked. The mass flow rate (mdot_A) before the flow is choked
follows the typical quadratic behavior with respect to an increasing pressure difference.
However, the mass flow rate after the flow is choked becomes linear because the choked
mass flow rate depends only on the upstream pressure and temperature, and the
upstream pressure is increasing linearly.

4 Gas System Models

4-8



 Modeling Gas Systems

4-9



The fact that the choked mass flow rate depends only on the upstream conditions can
cause an incompatibility with a Mass Flow Rate Source (G) or a Controlled Mass Flow
Rate Source (G) connected downstream of the choked block. Consider the model shown in
the next illustration, which contains the Controlled Mass Flow Rate Source (G) block
instead of the Controlled Pressure Source (G).

4 Gas System Models

4-10



If the source commanded an increasing mass flow rate from left to right through the
Local Restriction (G), the simulation would succeed even if the flow became choked
because the Controlled Mass Flow Rate Source (G) would be upstream of the choked
block. However, in this model the Gain block reverses the flow direction, so that the
Controlled Mass Flow Rate Source (G) is downstream of the choked block. The pressure
upstream of the Local Restriction (G) is fixed at atmospheric pressure. Therefore, the
choked mass flow rate in this situation is constant. As the commanded mass flow rate
increases, eventually it will become greater than this constant value of choked mass flow
rate. At this point, the commanded mass flow rate and the choked mass flow rate cannot
be reconciled and the simulation fails. Viewing the logged simulation data in the
Simscape Results Explorer shows that simulation fails just at the point when the Mach
number reaches 1 and the flow becomes choked.

 Modeling Gas Systems

4-11



In general, if a model is likely to choke, use pressure sources rather than mass flow rate
sources. If a model contains mass flow rate source blocks and simulation fails, use the
Simscape Results Explorer to inspect the Mach number variables in all Local Restriction
(G), Variable Local Restriction (G), and Pipe (G) blocks connected along the same branch
as the mass flow rate source. If the simulation failure occurs when the Mach number
reaches 1, it is likely that there is a downstream mass flow rate source trying to
command a mass flow rate greater than the possible choked mass flow rate.

The Mach number variable for the restriction blocks is called Mach_R. The Pipe (G)
block has two Mach number variables, Mach_A and Mach_B, representing the Mach
number at port A and port B, respectively.

4 Gas System Models

4-12



Flow Reversal

The flow of gas through the circuit carries energy from one gas volume to another gas
volume. Therefore, the energy flow rate between two connected blocks depends on the
direction of flow. If the gas flows from block A to block B, then the energy flow rate
between the two blocks is based on the specific total enthalpy of block A. Conversely, if
the gas flows from block B to block A, then the energy flow rate between the two blocks is
based on the specific total enthalpy of block B. To smooth the transition for simulation
robustness, the energy flow rate also includes a contribution based on the difference in
the specific total enthalpies of the two blocks at low mass flow rates. The smoothing
region is controlled by the Gas Properties (G) block parameter Mach number
threshold for flow reversal.

A consequence of this approach is that the temperature of a node between two connected
blocks represents the temperature of the gas volume upstream of that node. If there are
two or more upstream flow paths merging at the node, then the temperature at the node
represents the weighted average temperature based on the ideal mixing of the merging
gas flows.

Simulation robustness can be challenging for models that exhibit quick flow reversals
and large temperature differences between blocks. Quick flow reversals may be a result
of having low flow resistances (for example, short pipes) between large gas volumes.
Large temperature differences may be a result of the energy added by sources to
maintain large pressure differences in a model with little heat dissipation. In these
models, it may be necessary to increase the Mach number threshold for flow
reversal parameter value to avoid simulation failure.

See Also

Related Examples
• “Simple Gas Model” on page 4-14
• “Change Flow Boundary Conditions” on page 4-20
• Choked Flow in Gas Orifice
• Pneumatic Actuation Circuit
• Pneumatic Motor Circuit

 See Also

4-13



Simple Gas Model
In this example, you create a simple open-loop gas model. The model consists of a local
restriction between two reservoirs. The local restriction represents a valve or an orifice.
The reservoir blocks set up the boundary conditions for the local restriction.

Reservoir blocks are useful for setting up pressure and temperature boundary conditions.
If you want the pressure and temperature boundary conditions to change over time, use
controlled reservoir blocks.

To open the completed model, in the MATLAB Command Window, type
ssc_gas_tutorial_step1.

To create this model:

1 In the MATLAB Command Window, type:

ssc_new

4 Gas System Models

4-14

matlab:ssc_gas_tutorial_step1


Note By default, Simulink Editor hides the automatic block names in model
diagrams. To display hidden block names for training purposes, select Display and
clear the Hide Automatic Names check box.

2 Delete the Simulink-PS Converter block and the Open Simscape Library block.
3 To reduce diagram clutter, right-click the PS-Simulink Converter block and, from

the context menu, select Format > Show Block Name > Off.
4 Add the following blocks.

Block Name Library Quantity
Local Restriction (G) Gas/Elements 1
Reservoir (G) Gas/Elements 2
Gas Properties (G) Gas/Utilities 1
Mass & Energy Flow Rate Sensor (G) Gas/Sensors 1

5 Change the reservoir block names and connect the blocks as shown in the diagram.

6 Leave the Downstream Reservoir block at standard atmospheric conditions.

 Simple Gas Model

4-15



7 Change the Upstream Reservoir block to have a specified pressure of 0.12 MPa and
temperature of 400 K.

4 Gas System Models

4-16



8 Simulate the model. The mass flow rate through the restriction is approximately
0.13 kg/s.

 Simple Gas Model

4-17



See Also

Related Examples
• “Change Flow Boundary Conditions” on page 4-20

4 Gas System Models

4-18



More About
• “Modeling Gas Systems” on page 4-2

 See Also

4-19



Change Flow Boundary Conditions
In the “Simple Gas Model” on page 4-14 tutorial, you created a simple open-loop gas
model. This example shows how to modify this model by changing the gas flow boundary
conditions without affecting temperature. To open the completed model, in the MATLAB
Command Window, type ssc_gas_tutorial_step2.

To change the upstream boundary conditions from specified pressure and temperature to
specified mass flow rate and temperature:

1 Open the model created in the “Simple Gas Model” on page 4-14 tutorial, by typing
ssc_gas_tutorial_step1.

2 Change the Upstream Reservoir block back to Atmospheric pressure, but keep
the temperature of 400 K.

3 Add a Mass Flow Rate Source (G) block upstream from the local restriction. Set the
Mass flow rate parameter 0.15 kg/s.

4 Gas System Models

4-20

matlab:ssc_gas_tutorial_step2
matlab:ssc_gas_tutorial_step1


4 Simulate the model. The mass flow rate through the restriction is now 0.15 kg/s.

 Change Flow Boundary Conditions

4-21



5 To measure the absolute pressure and temperature upstream of the local restriction,
add a Pressure & Temperature Sensor (G) block and connect an Absolute Reference
(G) block to the B node of the sensor. Duplicate the converter-scope block pair to add
the Pressure and Temperature scopes to the model, as shown in the diagram.

4 Gas System Models

4-22



6 Simulate the model. To drive 0.15 kg/s of gas through the restriction, the Mass Flow
Rate Source (G) block increased the pressure from atmospheric (as specified by the
Upstream Reservoir block) to almost 0.13 MPa.

 Change Flow Boundary Conditions

4-23



The temperature upstream of the restriction is approximately 427 K, not 400 K (as
specified by the Upstream Reservoir block).

4 Gas System Models

4-24



7 The reason for the temperature increase is that the source needs to do work, to bring
the pressure up and drive the desired flow rate through the system, which adds
energy to the gas. This way, the source can be treated as an idealized compressor or
pump. However, our intent is just to specify an upstream boundary condition of 400
K and 0.15 kg/s, regardless of whether there is actually a compressor upstream or
not. Therefore, in the Mass Flow Rate Source (G) block dialog, switch the Power
added parameter to None.

 Change Flow Boundary Conditions

4-25



8 Simulate the model. The temperature upstream of the restriction is now 400 K.

4 Gas System Models

4-26



See Also

Related Examples
• “Simple Gas Model” on page 4-14

 See Also

4-27



More About
• “Modeling Gas Systems” on page 4-2

4 Gas System Models

4-28



Model Simulation

• “How Simscape Models Represent Physical Systems” on page 5-2
• “How Simscape Simulation Works” on page 5-6
• “Setting Up Solvers for Physical Models” on page 5-12
• “Important Concepts and Choices in Physical Simulation” on page 5-17
• “Making Optimal Solver Choices for Physical Simulation” on page 5-21
• “Filtering Input Signals and Providing Time Derivatives” on page 5-26
• “System Scaling by Nominal Values” on page 5-29
• “Troubleshooting Simulation Errors” on page 5-36
• “Limitations” on page 5-43
• “References” on page 5-49

5



How Simscape Models Represent Physical Systems
In this section...
“Representations of Physical Systems” on page 5-2
“Differential, Differential-Algebraic, and Algebraic Systems” on page 5-2
“Stiffness” on page 5-3
“Events and Zero Crossings” on page 5-3
“Working with Simscape Representation” on page 5-3
“Managing Zero Crossings in Simscape Models” on page 5-4

Representations of Physical Systems

This section describes important characteristics of the mathematical representations of
physical systems, and how Simscape software implements such representations. You
might find this overview helpful if you:

• Require details of such representations to improve your model fidelity or simulation
performance.

• Are constructing your own, custom Simscape components using the Simscape
language.

• Need to troubleshoot Simscape modeling or simulation failures.

Mathematical representations are the foundation for physical simulation. For more
information about simulation, see “How Simscape Simulation Works” on page 5-6.

Differential, Differential-Algebraic, and Algebraic Systems

The mathematical representation of a physical system contains ordinary differential
equations (ODEs), algebraic equations, or both.

• ODEs govern the rates of change of system variables and contain some or all of the
time derivatives of the system variables.

• Algebraic equations specify functional constraints among system variables, but
contain no time derivatives of system variables.

• Without algebraic constraints, the system is differential (ODEs).

5 Model Simulation

5-2



• Without ODEs, the system is algebraic.
• With ODEs and algebraic constraints, the system is mixed differential-algebraic

(DAEs).

A system variable is differential or algebraic, depending on whether or not its time
derivative appears in the system equations.

Stiffness

A mathematical problem is stiff if the solution you are seeking varies slowly, but there
are other solutions within the error tolerances that vary rapidly. A stiff system has
several intrinsic time scales of very different magnitude [1].

A stiff physical system has one or more components that behave “stiffly” in the ordinary
sense, such as a spring with a large spring constant. Mathematical equivalents include
quasi-incompressible fluids and low electrical inductance. Such systems often exhibit
high frequency oscillations in some of their components or modes.

Events and Zero Crossings

Events are discontinuous changes in system state or dynamics as the system evolves in
time; for example, a valve opening, or a hard stop. For more information on how events
are represented in the Simscape language, see “Discrete Event Modeling”.

A zero crossing is a specific event type, represented by the value of a mathematical
function changing sign. Variable-step solvers take smaller steps when they detect a zero-
crossing event. Smaller steps help to capture the dynamics that cause the zero crossing,
but they also significantly slow down the simulation. Various methods of zero crossing
detection and analysis help you strike the right balance between the simulation speed
and accuracy. For more information, see “Managing Zero Crossings in Simscape Models”
on page 5-4.

Working with Simscape Representation

A Simscape model is equivalent to a set of equations representing one or more physical
systems as physical networks.

• Start by assuming that your physical network is a DAE system: a mix of differential
and algebraic equations and variables on page 5-2.

 How Simscape Models Represent Physical Systems

5-3



Remember that some physical networks are represented by ODEs only.
• Physical networks may contain stiff differential equations on page 5-3.
• Identify discrete and continuous components that might change discontinuously on

page 5-3 during a simulation.

Managing Zero Crossings in Simscape Models

Your model can contain zero-crossing conditions arising from several sources:

• Simscape and Simulink blocks copied from their respective block libraries
• Custom blocks programmed in the Simscape language

Simulink software has global methods for managing zero-crossing events. For more
information, see “Zero-Crossing Detection” (Simulink).

You can disable zero-crossing detection on individual blocks, or globally across the entire
model. Zero-crossing detection often improves simulation accuracy, but can slow
simulation speed.

Tip If the exact times of zero crossings are important in your model, then keep zero-
crossing detection enabled. Disabling it can lead to major simulation inaccuracies.

Detecting and Minimizing Zero Crossings in Simscape Models

In addition to generic Simulink methods, Simscape software has specific tools that let
you detect and manage zero-crossings in your models:

• Prior to simulation, you can use the Statistics Viewer to identify the potential zero-
crossing signals in the model. These signals are typically generated from operators
and functions that contain discontinuities, such as comparison operators, abs, sqrt
functions, and so on. During simulation it is possible for none of these signals to
produce a zero-crossing event or for one or more of these signals to have multiple zero-
crossing events. For more information, see “View Model Statistics” on page 12-13.

• When logging simulation data for a model, you can select the Log simulation
statistics option. The data log then includes the actual zero-crossing data during
simulation. For more information, see “Log Simulation Statistics” on page 11-15.

5 Model Simulation

5-4



You can access and analyze zero-crossing data logged during simulation by using the
Simscape Results Explorer. For more information, see “About the Simscape Results
Explorer” on page 11-29.

• The sscprintzcs function prints information about zero crossings detected during
simulation, based on logged simulation data. Before you call this function, you must
have the simulation log variable, which includes simulation statistics data, in your
current workspace. For more information and examples, see sscprintzcs.

Managing zero crossing is especially important when you prepare your models for real-
time simulation. See “Reduce Zero Crossings” on page 9-66 for a detailed example of
this workflow.

Enabling and Disabling Zero-Crossing Conditions in Simscape Language

When writing code for your own custom blocks using the Simscape language, you can
create or avoid zero-crossing conditions in your model by switching between different
implementations of discontinuous conditional expressions. You can:

• Use relational operators, which create zero-crossing conditions. For example,
programming the operator relation: a < b creates a zero-crossing condition.

• Use relational functions, which do not create zero-crossing conditions. For example,
programming the functional relation: lt(a,b) does not create a zero-crossing
condition. For more information on whether a particular function creates
discontinuities when used in Simscape language, see equations.

Note Using relational functions, like lt(a,b), in event predicates always creates a zero-
crossing condition. For more information about event predicates, see “Discrete Event
Modeling”.

 How Simscape Models Represent Physical Systems

5-5



How Simscape Simulation Works
In this section...
“Simscape Simulation Phases” on page 5-6
“Model Validation” on page 5-8
“Network Construction” on page 5-8
“Equation Construction” on page 5-9
“Initial Conditions Computation” on page 5-9
“Transient Initialization” on page 5-10
“Transient Solve” on page 5-11

Simscape Simulation Phases

You might find this brief overview helpful for constructing models and understanding
errors. For more information, see “How Simscape Models Represent Physical Systems”
on page 5-2.

Simscape software gives you multiple ways to simulate and analyze physical systems in
the Simulink environment. Running a physical model simulation is similar to simulating
any Simulink model. It entails setting various simulation options, starting the
simulation, and viewing the simulation results. This topic describes various aspects of
simulation specific to Simscape models. For specifics of simulating and analyzing with
individual Simscape add-on products, refer to the documentation for those individual
add-on products.

This flow chart presents the Simscape simulation sequence.

5 Model Simulation

5-6



The flow chart consists of the following major phases:

1 “Model Validation” on page 5-8
2 “Network Construction” on page 5-8
3 “Equation Construction” on page 5-9
4 “Initial Conditions Computation” on page 5-9
5 “Transient Initialization” on page 5-10

 How Simscape Simulation Works

5-7



6 “Transient Solve” on page 5-11

Model Validation
The Simscape solver first validates the model configuration and checks your data entries
from the block dialog boxes.

• All Simscape blocks in a diagram must be connected into one or more physical
networks. Unconnected Conserving ports are not allowed.

• Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block.

• If your model contains hydraulic elements, each topologically distinct hydraulic
circuit in a diagram must connect to a Custom Hydraulic Fluid block (or Hydraulic
Fluid block, available with Simscape Fluids block libraries). These blocks define the
fluid properties that act as global parameters for all the blocks that connect to the
hydraulic circuit. If no hydraulic fluid block is attached to a loop, the hydraulic blocks
in this loop use the default fluid. However, more than one hydraulic fluid block in a
loop generates an error.

Similarly, if your model contains gas elements, default gas properties are for dry air.
If you attach a Gas Properties (G) block to a topologically distinct circuit, you can
change gas properties for all the blocks connected to the circuit. However, more than
one Gas Properties (G) block in a circuit generates an error.

• Signal units specified in a Simulink-PS Converter block must match the input type
expected by the Simscape block connected to it. For example, when you provide the
input signal for an Ideal Angular Velocity Source block, specify angular velocity units,
such as rad/s or rpm, in the Simulink-PS Converter block, or leave it unitless.
Similarly, units specified in a PS-Simulink Converter block must match the type of
physical signal provided by the Simscape block outport.

Network Construction
After validating the model, the Simscape solver constructs the physical network based on
the following principles:

• Two directly connected Conserving ports have the same values for all their Across
variables (such as voltage or angular velocity).

• Any Through variable (such as current or torque) transferred along the Physical
connection line is divided among the multiple components connected by the branches.

5 Model Simulation

5-8



For each Through variable, the sum of all its values flowing into a branch point
equals the sum of all its values flowing out.

Equation Construction

Based on the network configuration, the parameter values in the block dialog boxes, and
the global parameters defined by the fluid properties, if applicable, the Simscape solver
constructs the system of equations for the model.

These equations contain system variables of the following types:

• Dynamic — Time derivatives of these variables appear in equations. Dynamic, or
differential, variables add dynamics to the system and require the solver to use
numerical integration to compute their values. Dynamic variables can produce either
independent or dependent states for simulation.

• Algebraic — Time derivatives of these variables do not appear in equations. These
variables appear in algebraic equations but add no dynamics, and this typically occurs
in physical systems due to conservation laws, such as conservation of mass and
energy. The states of algebraic variables are always dependent on dynamic variables,
other algebraic variables, or inputs.

The solver then performs the analysis and eliminates variables that are not needed to
solve the system of equations. After variable elimination, the remaining variables
(algebraic, dynamic dependent, and dynamic independent) get mapped to Simulink state
vector of the model.

For information on how to view and analyze model variables, see “Model Statistics”.

Initial Conditions Computation

The Simscape solver computes the initial conditions only once, at the beginning of
simulation (t = 0). In the Solver Configuration block dialog box, the default is that the
Start simulation from steady state check box is not selected. If it is selected in your
model, see “Finding an Initial Steady State” on page 5-10.

The solver computes the initial conditions by finding initial values for all the system
variables that exactly satisfy all the model equations. You can affect the initial conditions
computation by block-level variable initialization, that is, by specifying the priority and
target initial values on the Variables tab of the block dialog boxes. You can also
initialize variables for a whole model from a saved operating point.

 How Simscape Simulation Works

5-9



The values you specify during variable initialization are not the actual values of the
respective variables, but rather their target values at the beginning of simulation (t = 0).
Depending on the results of the solve, some of these targets may or may not be satisfied.
The solver tries to satisfy the high-priority targets first, then the low-priority ones:

• At first, the solver tries to find a solution where all the high-priority variable targets
are met exactly, and the low-priority targets are approximated as closely as possible.
If the solution is found during this stage, it satisfies all the high-priority targets.
Some of the low-priority targets might also be met exactly, the others are
approximated.

• If the solver cannot find a solution that exactly satisfies all the high-priority targets,
it issues a warning and enters the second stage, where High priority is relaxed to
Low. That is, the solver tries to find a solution by approximating both the high-
priority and the low-priority targets as closely as possible.

After you initialize the variables and prior to simulating the model, you can open the
Variable Viewer to see which of the variable targets have been satisfied. For more
information on block-level variable initialization, see “Variable Initialization”.

Finding an Initial Steady State

When you select the Start simulation from steady state check box, the solver
attempts to find the steady state that would result if the inputs to the system were held
constant for a long enough time, starting from the initial state obtained from the initial
conditions computation just described. If the steady-state solve succeeds, the state found
is some steady state (within tolerance), but not necessarily the state expected from the
given initial conditions. Steady state means that the system variables are no longer
changing with time. Simulation then starts from this steady state.

A model can have more than one steady state. In this case, the solver selects the steady-
state solution that is consistent with the variable targets specified during block-level
variable initialization. For more information, see “Variable Initialization”.

Transient Initialization
After computing the initial conditions, or after a subsequent event (such as a
discontinuity resulting, for example, from a valve opening, or from a hard stop), the
Simscape solver performs transient initialization. Transient initialization fixes all
dynamic variables and solves for algebraic variables and derivatives of dynamic
variables. The goal of transient initialization is to provide a consistent set of initial
conditions for the next phase, transient solve.

5 Model Simulation

5-10



Transient Solve

Finally, the Simscape solver performs transient solve of the system of equations. In
transient solve, continuous differential equations are integrated in time to compute all
the variables as a function of time.

The solver continues to perform the simulation according to the results of the transient
solve until the solver encounters an event, such as a zero crossing or discontinuity. The
event may be within the physical network or elsewhere in the Simulink model. If the
solver encounters an event, the solver returns to the phase of transient initialization, and
then back to transient solve. This cycle continues until the end of simulation.

 How Simscape Simulation Works

5-11



Setting Up Solvers for Physical Models
In this section...
“About Simulink and Simscape Solvers” on page 5-12
“Choosing Simulink and Simscape Solvers” on page 5-12
“Harmonizing Simulink and Simscape Solvers” on page 5-14

About Simulink and Simscape Solvers

This section explains how to select solvers for physical simulation. Proper simulation of
Simscape models requires certain changes to Simulink defaults and consideration of
physical simulation trade-offs. For recommended choices, see “Making Optimal Solver
Choices for Physical Simulation” on page 5-21.

Choosing Simulink and Simscape Solvers

Simulink and Simscape solver technologies provide a range of tools to simulate physical
systems, including the powerful Simscape technique of local solvers. You choose global,
or model-wide, solvers through Simulink. After making these choices, check that they are
consistent; see “Harmonizing Simulink and Simscape Solvers” on page 5-14.

• “Working with Global Simulink Solvers” on page 5-12
• “Working with Local Simscape Solvers” on page 5-13

Working with Global Simulink Solvers

In the Configuration Parameters dialog box of your model, on the Solver pane, the solver
and related settings that you select are global choices. For more information, see “About
Solvers” (Simulink).

When you first create a model, the default Simulink solver is VariableStepAuto. For
more information, see “Use Auto Solver to Select a Solver” (Simulink). To select a
different solver, follow a procedure similar to the procedure in “Modifying Initial
Settings” on page 1-26.

• You can choose one from a suite of both variable-step and fixed-step solvers.
• You can also select from among explicit and implicit solvers. For physical models,

MathWorks recommends implicit solvers, such as ode14x, ode23t, and ode15s.

5 Model Simulation

5-12



Implicit solvers require fewer time steps than explicit solvers, such as ode45, ode113,
and ode1.

See “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 5-
14.

• If all the Simulink and Simscape states in your model are discrete, Simulink
automatically switches to a discrete solver and issues a warning. Otherwise, a
continuous solver is the default.

• By default, Simulink variable-step solvers attempt to locate events in time by zero-
crossing detection. See “Managing Zero Crossings in Simscape Models” on page 5-4.

Working with Local Simscape Solvers

You can switch one or more physical networks to a local implicit, fixed-step Simscape
solver by selecting Use local solver in the network Solver Configuration block. The
solver and related settings you make in each Solver Configuration block are specific to
the connected physical network and can differ from network to network.

A physical network using a local solver appears to the global Simulink solver as if it has
discrete states. You can still use any continuous global solver.

Choosing Local Solvers and Sample Times

To use a local solver, choose a solver type (Backward Euler or Trapezoidal Rule) and a
sample time. Backward Euler is the default.

Choosing Fixed-Cost Simulation

You can select a fixed-cost simulation for one or more physical networks by selecting Use
fixed-cost runtime consistency iterations, as well as Use local solver, and fixing
the number of nonlinear and mode iterations. Fixed-cost simulation requires a global
fixed-step solver.

Choosing Multirate Simulation

With the local solver option, you can perform multirate simulations, with:

• Different sample times in different physical networks, through their respective Solver
Configuration blocks

• A sample-based Simulink block in the model with a sample time different from the
Solver Configuration block or blocks

 Setting Up Solvers for Physical Models

5-13



Harmonizing Simulink and Simscape Solvers
Your Simulink and Simscape solver choices must work together consistently. To ensure
consistency of your Simulink and Simscape solver choices for a particular model, open
the model Configuration Parameters dialog box. From the top menu bar in the model
window, select Simulation > Model Configuration Parameters. Review and adjust
the following settings.

• “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 5-14
• “Enabling or Disabling Simulink Zero-Crossing Detection” on page 5-15
• “Making Multirate Simulation Consistent” on page 5-16

Simscape Pane of the Configuration Parameters Dialog Box

Switching from the Default Explicit Solver to Other Simulink Solvers

When you first create a model, the default Simulink solver is VariableStepAuto. Auto
solver chooses a suitable solver as described in “Use Auto Solver to Select a Solver”

5 Model Simulation

5-14



(Simulink), and for some types of models it can choose an explicit solver, ode45. If you do
not modify the default (explicit) solver, your performance may not be optimal. Implicit
solvers are better for most physical simulations. For more information about implicit
solvers and physical systems, see “Important Concepts and Choices in Physical
Simulation” on page 5-17.
Diagnostic Messages About Explicit Solvers

When you use an explicit solver in a model containing Simscape blocks, the system issues
a warning to alert you to a potential problem.

To turn off this default warning or to change it to an error message, go to the Simscape
pane of the Configuration Parameters dialog box:

1 From the Explicit solver used in model containing Physical Networks blocks
drop-down list, select the option that you want:

• warning — If the model uses an explicit solver, the system issues a warning
upon simulation. This is the default option that alerts you to a potential problem
if you use the default solver.

• error — If the model uses an explicit solver, the system issues an error message
upon simulation. If your model is stiff, and you do not want to use explicit solvers,
select this option to avoid future errors.

• none — If the model uses an explicit solver, the system issues no warning or
error message upon simulation. If you want to work with explicit solvers, in
particular for models that are not stiff, select this option.

2 Click OK.

Enabling or Disabling Simulink Zero-Crossing Detection

By default, Simulink tracks an important class of simulation events by detecting zero
crossings. With a global variable-step solver and without a local solver, Simulink
attempts to locate the simulated times of zero crossings, if present. See “Managing Zero
Crossings in Simscape Models” on page 5-4.
Diagnostic Messages About Globally Disabling Zero-Crossing Detection

You can globally disable zero-crossing detection in the Solver pane of the Configuration
Parameters dialog box, under Zero-crossing options. If you do, and if you are using a
global variable-step solver without a local solver, the system issues a warning or error
when you simulate with Simscape blocks.

 Setting Up Solvers for Physical Models

5-15



You can choose between warning and error messages in the Simscape pane of the
Configuration Parameters dialog box.

1 From the Zero-crossing control is globally disabled in Simulink drop-down
list, select the option that you want, if you globally disable zero-crossing detection:

• warning — The system issues a warning message upon simulation. This option
is the default.

• error — The system issues an error message upon simulation, which stops.
2 Click OK.

Making Multirate Simulation Consistent

The sample time or step size of the global Simulink solver must be the smallest time step
of all the solvers in a multirate Simscape simulation.

To avoid simulation errors in sample time propagation, go to the Solver pane in the
Configuration Parameters dialog box and select the Automatically handle rate
transition for data transfer check box.

5 Model Simulation

5-16



Important Concepts and Choices in Physical Simulation
This section describes advanced concepts and trade-offs you might want to consider as
you configure and test solvers and other simulation settings for your Simscape model.
For a summary of recommended settings, see “Making Optimal Solver Choices for
Physical Simulation” on page 5-21. For background information, consult “How Simscape
Models Represent Physical Systems” on page 5-2 and “How Simscape Simulation Works”
on page 5-6.

In this section...
“Variable-Step and Fixed-Step Solvers” on page 5-17
“Explicit and Implicit Solvers” on page 5-18
“Full and Sparse Linear Algebra” on page 5-18
“Event Detection and Location” on page 5-18
“Unbounded, Bounded, and Fixed-Cost Simulation” on page 5-19
“Global and Local Solvers” on page 5-19

Variable-Step and Fixed-Step Solvers

Variable-step solvers are the usual choice for design, prototyping, and exploratory
simulation, and to precisely locate events during simulation. They are not useful for real-
time simulation and can be costly if there are many events.

A variable-step solver automatically adjusts its step size as it moves forward in time to
adapt to how well it controls solution error. You control the accuracy and speed of the
variable-step solution by adjusting the solver tolerance. With many variable-step solvers,
you can also limit the minimum and maximum time step size.

Fixed-step solvers are recommended or required if you want to make performance
comparisons across platforms and operating systems, to generate a code version of your
model, and to bound or fix simulation cost. A typical application is real-time simulation.
For more information, see “Real-Time Simulation”.

With a fixed-step solver, you specify the time step size to control the accuracy and speed
of your simulation. Fixed-step solvers do not adapt to improve accuracy or to locate
events. These limitations can lead to significant simulation inaccuracies.

 Important Concepts and Choices in Physical Simulation

5-17



Explicit and Implicit Solvers

The degree of stiffness and the presence of algebraic constraints in your model influence
the choice between an explicit or implicit solver. Explicit and implicit solvers use
different numerical methods to simulate a system.

• If the system is a nonstiff ODE system, choose an explicit solver. Explicit solvers
require less computational effort than implicit solvers, if other simulation
characteristics are fixed.

To find a solution for each time step, an explicit solver uses a formula based on the
local gradient of the ODE system.

• If the system is stiff, use an implicit solver. Though an explicit solver may require less
computational effort, for stiff problems an implicit solver is more accurate and often
essential to obtain a solution. Implicit solvers require per-step iterations within the
simulated time steps. With some implicit solvers, you can limit or fix these iterations.

An implicit solver starts with the solution at the current step and iteratively solves
for the solution at the next time step with an algebraic solver. An implicit algorithm
does more work per simulation step, but can take fewer, larger steps.

• If the system contains DAEs, even if it is not stiff, use an implicit solver. Such solvers
are designed to simultaneously solve algebraic constraints and integrate differential
equations.

Full and Sparse Linear Algebra

When you simulate a system with more than one state, the solver manipulates the
mathematical system with matrices. For a large number of states, sparse linear algebra
methods applied to large matrices can make the simulation more efficient.

Event Detection and Location

Events, in most cases, occur between simulated time steps.

• Fixed-step solvers detect events after “stepping over” them, but cannot adaptively
locate events in time. This can lead to large inaccuracies or failure to converge on a
solution.

• Variable-step solvers can both detect events and estimate the instants when they
occur by adapting the timing and length of the time steps.

5 Model Simulation

5-18



Tip To estimate the timing of events or rapid changes in your simulation, use a variable-
step solver.

If your simulation has to frequently adapt to events or rapid changes by changing its step
size, much or all of the advantage of implicit solvers over explicit solvers is lost.

Unbounded, Bounded, and Fixed-Cost Simulation

In certain cases, such as real-time simulation, you need to simulate with an execution
time that is not only bounded, but practically fixed to a predictable value. Fixing
execution time can also improve performance when simulating frequent events.

The real-time cost of a variable-step simulation is potentially unlimited. The solver can
take an indefinite amount of real time to solve a system over a finite simulated time,
because the number and size of the time steps are adapted to the system. You can
configure a fixed-step solver to take a bounded amount of real time to complete a
simulation, although the exact amount of real time might still be difficult to predict
before simulation. Even a fixed-step solver can take multiple iterations to find a solution
at each time step. Such iterations are variable and not generally limited in number; the
solver iterates as much as it needs to.

Fixing execution time implies fixed-cost simulation, which both fixes the time step and
limits the number of per-step iterations. Fixed-cost simulation prevents execution
overruns, when the execution time is longer than the simulation sample time. A bounded
execution time without a known fixed cost might still cause some steps to overrun the
sample time.

The actual amount of computational effort required by a solver is based on a number of
other factors as well, including model complexity and computer processor. For more
information, see “Real-Time Simulation”.

Global and Local Solvers

You can use different solvers on different parts of the system. For example, you might
want to use implicit solvers on stiff parts of a system and explicit solvers everywhere
else. Such local solvers make the simulation more efficient and reduce computational
cost.

 Important Concepts and Choices in Physical Simulation

5-19



Such multisolver simulations must coordinate the separate sequences of time steps of
each solver and each subsystem so that the various solvers can pass simulation updates
to one another on some or all of the shared time steps.

5 Model Simulation

5-20



Making Optimal Solver Choices for Physical Simulation
For the key simulation concepts to consider before making these choices, see “Important
Concepts and Choices in Physical Simulation” on page 5-17.

In this section...
“Simulating with Variable Time Step” on page 5-21
“Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers” on page 5-
21
“Simulating with Fixed Cost” on page 5-22
“Troubleshooting and Improving Solver Performance” on page 5-23
“Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System” on page 5-24

Simulating with Variable Time Step

For a typical Simscape model, MathWorks recommends the Simulink variable-step
solvers ode15s and ode23t. Of these two global solvers:

• The ode15s solver is more stable, but tends to damp out oscillations.
• The ode23t solver captures oscillations better but is less stable.

With Simscape models, these solvers solve the differential and algebraic parts of the
physical model simultaneously, making the simulation more accurate and efficient.

Simulating with Fixed Time Step — Local and Global Fixed-Step
Solvers

In a Simscape model, MathWorks recommends that you implement fixed-step solvers by
continuing to use a global variable-step solver and switching the physical networks
within your model to local fixed-step solvers through each network Solver Configuration
block. The local solver choices are Backward Euler and Trapezoidal Rule. Of these two
local solvers:

• The Backward Euler tends to damp out oscillations, but is more stable, especially if
you increase the time step.

• The Trapezoidal Rule solver captures oscillations better but is less stable.

 Making Optimal Solver Choices for Physical Simulation

5-21



Regardless of which local solver you choose, the Backward Euler method is always
applied:

• Right at the start of simulation.
• Right after an instantaneous change, when the corresponding block undergoes an

internal discrete change. Such changes include clutches locking and unlocking, valve
actuators opening and closing, and the switching of the Asynchronous Sample & Hold
block.

Switching to Discrete States and Solvers

• If you switch a physical network to a local solver, the global solver treats that network
as having discrete states.

• If other physical networks in your model are not using local solvers, or if the non-
Simscape parts of your model have continuous states, then you must use a continuous
global solver.

• If all physical networks in your model use local solvers, and any non-Simscape parts
of your model have only discrete states, then the global solver effectively sees only
discrete states. In that case, MathWorks recommends a discrete, fixed-step global
solver. If you are attempting a fixed-cost simulation with discrete states, you must
use a discrete, fixed-step global solver.

For Maximum Accuracy with Fixed-Step Simulation

If solution accuracy is your single overriding requirement, use the global Simulink fixed-
step solver ode14x, without local solvers. This implicit solver is the best global fixed-step
choice for physical systems. While it is more accurate than the Simscape local solvers for
most models, ode14x can be computationally more intensive and slower when you use it
by itself than it is when you use it in combination with local solvers.

In this solver, you must limit the number of global implicit iterations per time step.
Control these iterations with the Number Newton’s iterations parameter in the
Solver pane of the Configuration Parameters dialog box.

Simulating with Fixed Cost

Many Simscape models need to iterate multiple times within one time step to find a
solution. If you want to fix the cost of simulation per time step, you must limit the
number of these iterations, regardless of whether you are using a local solver, or a global
solver like ode14x. For more information, see “Unbounded, Bounded, and Fixed-Cost

5 Model Simulation

5-22



Simulation” on page 5-19 and “Fixed-Cost Simulation for Real-Time Viability” on page 9-
89.

To limit the iterations, open the Solver Configuration block of each physical network.
Select Use fixed-cost runtime consistency iterations and set limits for the number
of nonlinear and mode iterations per time step.

Tip Fixed-cost simulation with variable-step solvers is not possible in most simulations.
Attempt fixed-cost simulation with a fixed-step solver only and avoid using fixed-cost
iterations with variable-step solvers.

Troubleshooting and Improving Solver Performance
Consider the basic trade-off of speed versus accuracy and stability. A larger time step or
tolerance results in faster simulation, but also less accurate and less stable simulation. If
a system undergoes sudden or rapid changes, larger tolerance or step size can cause
major errors. Consider tightening the tolerance or step size if your simulation:

• Is not accurate enough or looks unphysical.
• Exhibits discontinuities in state values.
• Reaches the minimum step size allowed without converging, usually a sign that one

or more events or rapid changes occur within a time step.

Any one or all of these steps increase accuracy, but make the simulation run more slowly.

For Local Solvers

Models with friction or hard stops are particularly difficult for local solvers, and may not
work or may require a very small time step.

With the Trapezoidal Rule solver, oscillatory “ringing” can become more of a problem as
the time step is increased. For a larger time step in a local solver, consider switching to
Backward Euler.

For ODE Systems

In certain cases, your model reduces to an ODE system, with no dependent algebraic
variables. (See “How Simscape Models Represent Physical Systems” on page 5-2.) If so,
you can use any global Simulink solver, with no special physical modeling considerations.
An explicit solver is often the best choice in such situations.

 Making Optimal Solver Choices for Physical Simulation

5-23



• Through careful analysis, you can sometimes determine if your model is represented
by an ODE system.

• If you create a Simscape model from a mathematical representation using the
Simscape language, you can determine directly if the resulting system is ODE.

For Large Systems

Depending on the number of system states, you can simulate more efficiently if you
switch the value of the Linear Algebra setting in the Solver Configuration block.

For smaller systems, Full provides faster results. For larger systems, Sparse is
typically faster.

Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System

In this example, a Simscape model contains three physical networks.

• Two networks (numbers 1 and 3) use local solvers, making these two networks appear
to the global solver as if they had discrete states. Internally, these networks still have
continuous states. These networks are moderately and highly stiff, respectively.

One of these networks (number 1) uses the Backward Euler (BE) local solver. The
other (number 3) uses the Trapezoidal Rule (TR) local solver.

• The remaining network (number 2) uses the global Simulink solver. Its states appear
to the model as continuous. This network is not stiff and is pure ODE. Use an explicit
global solver.

• Because at least one network appears to the model as continuous, you must use a
continuous solver. However, if you remove network 2, and if the model contains no
continuous Simulink states, Simulink automatically switches to a discrete global
solver.

5 Model Simulation

5-24



 Making Optimal Solver Choices for Physical Simulation

5-25



Filtering Input Signals and Providing Time Derivatives
You may need to provide time derivatives of some of the input signals, especially if you
use an explicit solver. One way of providing the necessary input derivatives is by filtering
the input through a low-pass filter. Input filtering makes the input signal smoother and
generally improves model performance. The additional benefit is that the Simscape
engine computes the time derivatives of the filtered input. The first-order filter provides
one derivative, while the second-order filter provides the first and second derivatives. If
you use input filtering, it is very important to select the appropriate value for the filter
time constant.

The filter time constant controls the filtering of the input signal. The filtered input
follows the true input but is smoothed, with a lag on the order of the time constant that
you choose. Set the time constant to a value no larger than the smallest time interval in
the system that interests you. If you choose a very small time constant, the filtered input
signal is closer to the true input signal. However, this filtered input signal increases the
stiffness of the system and slows the simulation.

Instead of using input filtering, you can provide time derivatives for the input signal
directly, as additional physical signals.

For piecewise-constant signals, you can also explicitly set the input derivatives to zero.

You can control the way you provide time derivatives for each input signal by configuring
the Simulink-PS Converter block connected to that input signal:

1 Open the Simulink-PS Converter block dialog box.
2 Click the Input Handling tab.

5 Model Simulation

5-26



3 When you add a new Simulink-PS Converter block to your model, the default input
handling options are Provide signals and Input only, and the block has one
Simulink input port and one physical signal output port.

4 To turn on input filtering, set the Filtering and derivatives parameter to Filter
input, derivatives calculated. Select the first-order or second-order filter, by
using the Input filtering order parameter, and set the appropriate Input
filtering time constant (in seconds) parameter value for your model.

5 To avoid filtering the input signal, keep the Filtering and derivatives parameter
as Provide signals. Then set the Provided signals parameter value:

• Input and first derivative — If you select this option, an additional
Simulink input port appears on the Simulink-PS Converter block, to let you
connect the signal providing input derivative.

• Input and first two derivatives — If you select this option, two
additional Simulink input ports appear on the Simulink-PS Converter block, to
let you connect the signals providing input derivatives.

 Filtering Input Signals and Providing Time Derivatives

5-27



6 Finally, if your input signal is piecewise constant (such as step), you can also
explicitly set the input derivatives to zero by selecting the Zero derivatives
(piecewise constant) value for the Filtering and derivatives parameter.

5 Model Simulation

5-28



System Scaling by Nominal Values

In this section...
“Enable or Disable System Scaling by Nominal Values” on page 5-29
“Possible Sources of Nominal Values and Their Evaluation Order” on page 5-30
“Specify Nominal Value-Unit Pairs for a Model” on page 5-30
“Modify Nominal Values for a Block Variable” on page 5-33

Nominal values provide a way to specify the expected magnitude of a variable in a model,
similar to specifying a transformer rating, or setting a range on a voltmeter. Using
system scaling based on nominal values increases the simulation robustness. This
functionality provides a way to fine-tune scaling of individual variables in a model. It is
especially helpful for initial conditions convergence and maintaining a minimum step
size.

Enable or Disable System Scaling by Nominal Values

Using system scaling based on nominal values is a best practice for Simscape models
because it improves simulation robustness. Therefore, when you create a new model,
scaling by nominal values is enabled by default.

System scaling by nominal values is controlled by the Normalize using nominal
values configuration parameter.

1 In the model window, from the top menu bar, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape. The
right pane displays the Normalize using nominal values check box:

• If the check box is selected, the model provides the scaling information to the
solver based on the specified nominal values. To view, add, and edit the value-
unit pairs for the model, click the Specify nominal values button next to the
Normalize using nominal values check box.

• If the check box is cleared, the scaling by nominal values is disabled.

 System Scaling by Nominal Values

5-29



Possible Sources of Nominal Values and Their Evaluation Order

The scaling of each variable is determined by its nominal value and physical units.
Nominal values can come from different sources:

• Block — You can specify nominal value and unit as variable declaration attributes in
a Simscape component file underlying the block. These attributes translate into block
parameters x_nominal_value and x_nominal_unit (where x is the variable
name). You can also override these values on individual blocks in the model by setting
the corresponding block parameter x_nominal_specify to 'on' and supplying
different values for x_nominal_value and x_nominal_unit. These parameters are
not visible in the block dialog box, but you can use either the Property Inspector or
set_param and get_param functions to view and change their values. For more
information, see “Modify Nominal Values for a Block Variable” on page 5-33.

• Model — In absence of a nominal value specified for the block, a variable uses the
nominal value for the commensurate physical unit specified in the model table. All
models have a default table of nominal values and units (factory default). To view,
add, and edit the value-unit pairs for the model, click the Specify nominal values
button next to the Normalize using nominal values check box. For more
information, see “Specify Nominal Value-Unit Pairs for a Model” on page 5-30.

• Derived — If the model table of nominal values does not contain a row for a unit
commensurate with the physical unit of a variable, then the nominal value for this
variable is derived from fundamental dimensions. For example, if the variable's initial
value is in lbf, and there is no entry in the table for force, but the table contains
{10,'lbm'}, {12,'ft'}, and {2,'min'}, then the nominal value for that variable
is {10*12/2^2,'lbm*ft/min^2'}.

• Fixed — Event variables, top-level model inputs, and Simscape Multibody™
variables cannot be scaled according to nominal values.

The Variable Viewer in advanced configuration shows the nominal value and unit for
each variable, along with the source. For more information, see “Variable Viewer” on
page 6-24.

Specify Nominal Value-Unit Pairs for a Model

All models have a default table of nominal values and units (factory default). To view,
add, and edit the value-unit pairs for a model:

5 Model Simulation

5-30



1 In the model window, from the top menu bar, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape.
3 Make sure the Normalize using nominal values check box is selected.
4 Click the Specify nominal values button next to the Normalize using nominal

values check box.

The model table of nominal values opens in a new window. It contains all the value-
unit pairs currently defined for the model.

 System Scaling by Nominal Values

5-31



5 To edit a value-unit pair, select the corresponding cell and enter the new value or
unit.

5 Model Simulation

5-32



6 To add a new value-unit pair, in the top toolbar of the window containing the table,

click . This action adds a new empty row at the bottom of the table. Select the
cells in this row and enter the nominal value and unit for the new value-unit pair.

7
To delete a value-unit pair, select the corresponding row and click .

8 When finished editing the table, click OK. Table data is saved when you save the
model.

Modify Nominal Values for a Block Variable

Each variable in a block has three associated block parameters (where x is the variable
name):

• x_nominal_specify — Lets you override the system default nominal value for
variable x in this particular block. The default parameter value is 'off', in which
case the variable nominal value is determined according to the evaluation order
described in “Possible Sources of Nominal Values and Their Evaluation Order” on
page 5-30. Set this parameter to 'on' to use the x_nominal_value and
x_nominal_unit parameter values for scaling.

• x_nominal_value — If the x_nominal_specify parameter is set to 'on', then
this value, in conjunction with the nominal unit parameter, determines the scaling of
variable x in this particular block. The parameter value must be a numeric value,
specified as a character vector. The default parameter value is '1'.

• x_nominal_unit — If the x_nominal_specify parameter is set to 'on', then this
unit, in conjunction with the nominal value parameter, determines the scaling of
variable x in this particular block. The parameter value must be a valid physical unit
name, specified as a character vector. The unit must be commensurate with the unit
specified for the initial value of the variable. The default unit is the same as for the
initial value.

Note Nominal value and unit can be specified as variable declaration attributes in a
Simscape component file underlying the block. For more information, see “Nominal Value
and Unit for a Variable”. In this case, the nominal value and unit parameters for that
variable get their default values from the variable declaration attributes.

 System Scaling by Nominal Values

5-33



These parameters are not visible in the block dialog box, but you can use set_param and
get_param functions to view and change their values.

For example, to change the nominal value and unit for variable i (current) for an
individual block, select this block in the model and type:

set_param(gcb,'i_nominal_specify','on')
set_param(gcb,'i_nominal_value','10')
set_param(gcb,'i_nominal_unit','mA')

This sequence of commands overrides the default nominal value for the block variable
and sets it to 10 mA.

To perform the same actions using the Property Inspector:

1 Select the block in the model.
2 In the model window, from the top menu bar, select View > Property Inspector.
3 In the Property Inspector pane showing the block properties, expand the Variables

node, and then expand the nodes for the Current variable.

4 Select the check box next to Nominal. This action is equivalent to setting the
i_nominal_specify parameter to 'on'.

5 Model Simulation

5-34



5 Once the Nominal check box is selected, its Value field becomes editable. Enter 10
and select mA from the unit drop-down list.

See Also
variables

More About
• “Variable Viewer” on page 6-24

 See Also

5-35



Troubleshooting Simulation Errors
In this section...
“Troubleshooting Tips and Techniques” on page 5-36
“System Configuration Errors” on page 5-37
“Numerical Simulation Issues” on page 5-39
“Initial Conditions Solve Failure” on page 5-40
“Transient Simulation Issues” on page 5-41

Troubleshooting Tips and Techniques
Simscape simulations can stop before completion with one or more error messages. This
section discusses generic error types and error-fixing strategies. You might find the
previous section, “How Simscape Simulation Works” on page 5-6, useful for identifying
and tracing errors.

If a simulation failed:

• Review the model configuration. If your error message contains a list of blocks, look at
these blocks first. Also look for:

• Wrong connections — Verify that the model makes sense as a physical system. For
example, look for actuators connected against each other, so that they try to move
in opposite directions, or incorrect connections to reference nodes that prevent
movement. In electrical circuits, verify polarity and connections to ground.

• Wrong units — Simscape unit manager offers great flexibility in using physical
units. However, you must exercise care in specifying the correct units, especially in
the Simulink-PS Converter and PS-Simulink Converter blocks. Start analyzing
the circuit by opening all the converter blocks and checking the correctness of
specified units.

• Try to simplify the circuit. Unnecessary circuit complexity is the most common cause
of simulation errors.

• Break the system into subsystems and test every unit until you are positive that the
unit behaves as expected.

• Build the system by gradually increasing its complexity.

MathWorks recommends that you build, simulate, and test your model incrementally.
Start with an idealized, simplified model of your system, simulate it, verify that it works

5 Model Simulation

5-36



the way you expected. Then incrementally make your model more realistic, factoring in
effects such as friction loss, motor shaft compliance, hard stops, and the other things that
describe real-world phenomena. Simulate and test your model at every incremental step.
Use subsystems to capture the model hierarchy, and simulate and test your subsystems
separately before testing the whole model configuration. This approach helps you keep
your models well organized and makes it easier to troubleshoot them.

System Configuration Errors
• “Missing Solver Configuration Block” on page 5-37
• “Extra Fluid or Gas Properties Block” on page 5-37
• “Missing Reference Block” on page 5-38
• “Basic Errors in Physical System Representation” on page 5-38

Missing Solver Configuration Block

Each topologically distinct Simscape block diagram requires exactly one Solver
Configuration block to be connected to it. The Solver Configuration block specifies the
global environment information and provides parameters for the solver that your model
needs before you can begin simulation.

If you get an error message about a missing Solver Configuration block, open the
Simscape Utilities library and add the Solver Configuration block anywhere on the
circuit.

Extra Fluid or Gas Properties Block

If your model contains hydraulic elements, each topologically distinct hydraulic circuit in
a diagram requires a Custom Hydraulic Fluid block (or Hydraulic Fluid block, available
with Simscape Fluids block libraries) to be connected to it. These blocks define the fluid
properties that act as global parameters for all the blocks connected to the hydraulic
circuit. If no hydraulic fluid block is attached to a loop, the hydraulic blocks in this loop
use the default fluid. However, more than one hydraulic fluid block in a loop generates
an error.

Similarly, more than one Thermal Liquid Settings (TL) block in a thermal liquid circuit,
Two-Phase Fluid Properties (2P) block in a two-phase fluid circuit, or Gas Properties (G)
block in a gas circuit generates an error.

If you get an error message about too many domain-specific global parameter blocks
attached to the network, look for an extra Hydraulic Fluid block, Custom Hydraulic Fluid

 Troubleshooting Simulation Errors

5-37



block, Thermal Liquid Settings (TL) block, Two-Phase Fluid Properties (2P) block, or Gas
Properties (G) block and remove it.

Missing Reference Block

Simscape libraries contain domain-specific reference blocks, which represent reference
points for the conserving ports of the appropriate type. For example, each topologically
distinct electrical circuit must contain at least one Electrical Reference block, which
represents connection to ground. Similarly, hydraulic conserving ports of all the blocks
that are referenced to atmosphere (for example, suction ports of hydraulic pumps, or
return ports of valves, cylinders, pipelines, if they are considered directly connected to
atmosphere) must be connected to a Hydraulic Reference block, which represents
connection to atmospheric pressure. Mechanical translational ports that are rigidly
clamped to the frame (ground) must be connected to a Mechanical Translational
Reference block, and so on.

If you get an error message about a missing reference block, or node, check your system
configuration and add the appropriate reference block based on the rules described
above. The missing reference node diagnostic messages include information about the
particular block and variable that needs a reference node. This is especially helpful when
multiple domains are involved in the model. For more information and examples of best
modeling practices, see “Grounding Rules” on page 1-35.

Basic Errors in Physical System Representation

Physical systems are represented in the Simscape modeling environment as Physical
Networks according to the Kirchhoff's generalized circuit laws. Certain model
configurations violate these laws and are therefore illegal. There are two broad
violations:

• Sources of domain-specific Across variable connected in parallel (for example, voltage
sources, hydraulic pressure sources, or velocity sources)

• Sources of domain-specific Through variable connected in series (for example, electric
current sources, hydraulic flow rate sources, force or torque sources)

These configurations are impossible in the real world and illegal theoretically. If your
model contains such a configuration, upon simulation the solver issues an error followed
by a list of blocks, as shown in the following example.

5 Model Simulation

5-38



Example

The model shown in the following illustration contains two Ideal Translational Velocity
Sources connected in parallel. This produces a loop of independent velocity sources, and
the solver cannot construct a consistent system of equations for the circuit.

When you try to simulate the model, the solver issues an error message with links to the
Ideal Translational Velocity Source and Ideal Translational Velocity Source1 blocks. To
fix the circuit, you can either replace the two velocity sources by a single Ideal
Translational Velocity Source block, or add a Translational Damper block between them.

Numerical Simulation Issues

• “Dependent Dynamic States” on page 5-39
• “Parameter Discontinuities” on page 5-40

Numerical simulation issues can be either a result of certain circuit configurations or of
parameter discontinuities.

Dependent Dynamic States

Certain circuit configurations can result in dependent dynamic states, or the so-called
higher-index differential algebraic equations (DAEs). Simscape solver can handle
dependencies among dynamic states that are linear in the states and independent of time
and inputs to the system. For example, capacitors connected in parallel or inductors
connected in series will not cause any problems. Other circuit configurations with

 Troubleshooting Simulation Errors

5-39



dependent dynamic states, in certain cases, may slow down the simulation or lead to an
error when the solver fails to initialize.

Problems may occur when dynamic states have a nonlinear algebraic relationship. An
example is two inertias connected by a nonlinear gear constraint, such as an elliptical
gear. In case of simulation failure, the Simscape solver may be able to identify the
components involved, and provide an error message with links to the blocks and to the
equations within each block.

Parameter Discontinuities

Nonlinear parameters, dependent on time or other variables, may also lead to numerical
simulation issues as a result of parameter discontinuity. These issues usually manifest
themselves at the transient initialization stage (see “Transient Simulation Issues” on
page 5-41).

Initial Conditions Solve Failure

The initial conditions solve, which solves for all system variables (with initial conditions
specified on some system variables), may fail. This has several possible causes:

• System configuration error. In this case, the Simulation Diagnostics window usually
contains additional, more specific, error messages, such as a missing reference node,
or a warning about the component equations, followed by a list of components
involved. See “System Configuration Errors” on page 5-37 for more information.

• Dependent dynamic state. In this case, the Simulation Diagnostics window also may
contain additional, more specific, error messages, such as a warning about the
component equations, followed by a list of components involved. See “Dependent
Dynamic States” on page 5-39 for more information.

• The residual tolerance may be too tight to produce a consistent solution to the
algebraic constraints at the beginning of simulation. You can try to increase the
Consistency Tolerance parameter value (that is, relax the tolerance) in the Solver
Configuration block.

If the Simulation Diagnostics window has other, more specific, error messages, address
them first and try rerunning the simulation. See also “Troubleshooting Tips and
Techniques” on page 5-36.

5 Model Simulation

5-40



Transient Simulation Issues
• “Transient Initialization Not Converging” on page 5-41
• “Step-Size-Related Errors — Dependent States — High Stiffness” on page 5-41

Transient initialization happens at the beginning of simulation (after computing the
initial conditions) or after a subsequent event, such as a discontinuity (for example, when
a hard stop hits the stop). It is performed by fixing all dynamic variables and solving for
algebraic variables and derivatives of dynamic variables. The goal of transient
initialization is to provide a consistent set of initial conditions for the next transient solve
step.

Transient Initialization Not Converging

Error messages stating that transient initialization failed to converge, or that a set of
consistent initial conditions could not be generated, indicate transient initialization
issues. They can be a result of parameter discontinuity. Review your model to find the
possible sources of discontinuity. See also “Troubleshooting Tips and Techniques” on
page 5-36.

You can also try to decrease the Consistency Tolerance parameter value (that is,
tighten the tolerance) in the Solver Configuration block.

Step-Size-Related Errors — Dependent States — High Stiffness

A typical step-size-related error message may state that the system is unable to reduce
the step size without violating the minimum step size for a certain number of consecutive
times. This error message indicates numerical difficulties in solving the Differential
Algebraic Equations (DAEs) for the model. This might be caused by dependent dynamic
states (higher-index DAEs) or by the high stiffness of the system. You can try the
following:

• Tighten the solver tolerance (decrease the Relative Tolerance parameter value in
the Configuration Parameters dialog box)

• Specify a value, other than auto, for the Absolute Tolerance parameter in the
Configuration Parameters dialog box. Experiment with this parameter value.

• Tighten the residual tolerance (decrease the Consistency Tolerance parameter
value in the Solver Configuration block)

• Increase the value of the Number of consecutive min step size violations
allowed parameter in the Configuration Parameters dialog box (set it to a value

 Troubleshooting Simulation Errors

5-41



greater than the number of consecutive step size violations given in the error
message)

• Review the model configuration and try to simplify the circuit, or add small parasitic
terms to your circuit to avoid dependent dynamic states. For more information, see
“Numerical Simulation Issues” on page 5-39.

5 Model Simulation

5-42



Limitations

In this section...
“Sample Time and Solver Restrictions” on page 5-43
“Algebraic Loops” on page 5-43
“Unsupported Simulink Tools and Features” on page 5-44
“Restricted Simulink Tools” on page 5-45
“Simulink Tools Not Compatible with Simscape Blocks” on page 5-46
“Code Generation” on page 5-47

Sample Time and Solver Restrictions

The default sample times of Simscape blocks are continuous. You cannot simulate
Simscape blocks with discrete solvers using the default sample times.

If you switch to a local solver in the Solver Configuration block, the states of the
associated physical network become discrete. If there are no continuous Simulink or
Simscape states anywhere in a model, you are free to use a discrete solver to simulate
the model.

You cannot override the sample time of a nonvirtual subsystem containing Simscape
blocks.

Algebraic Loops

A Simscape physical network should not exist within a Simulink algebraic loop. This
means that you should not directly connect an output of a PS-Simulink Converter block
to an input of a Simulink-PS Converter block of the same physical network.

For example, the following model contains a direct feedthrough between the PS-Simulink
Converter block and the Simulink-PS Converter block (highlighted in magenta). To avoid
the algebraic loop, you can insert a Transfer Function block anywhere along the
highlighted loop.

 Limitations

5-43



A better way to avoid an algebraic loop without introducing additional dynamics is
shown in the modified model below.

Unsupported Simulink Tools and Features

Certain Simulink tools and features do not work with Simscape software:

• Exporting a model to a format used by an earlier version (File > Export Model to >
Previous Version) is not supported for models containing Simscape blocks.

• The Simulink Profiler tool does not work with Simscape models.

5 Model Simulation

5-44



• Physical signals and physical connection lines between conserving ports are different
from Simulink signals. Therefore, the Signal and Scope Manager tool and the signal
label functionality are not supported.

Restricted Simulink Tools

Certain Simulink tools are restricted for use with Simscape software:

• You can use the Simulink set_param and get_param commands to set or get
Simscape block parameters, if the parameters correspond to fields in the block dialog
box. MathWorks® does not recommend that you use these commands to find or
change any other block parameters.

If you make changes to block parameters at the command line, run your model first
before saving it. Otherwise, you might save invalid block parameters. Any block
parameter changes that you make with set_param are not validated unless you run
the model.

• Simscape blocks accept Simulink.Parameter objects as parameter values in
get_param and set_param, within the restrictions specified here.

• Enabled subsystems can contain Simscape blocks. Always set the States when
enabling parameter in the Enable dialog to held for the subsystem's Enable port.

Setting States when enabling to reset is not supported and can lead to fatal
simulation errors.

• You can place Simscape blocks within nonvirtual subsystems that support continuous
states. Nonvirtual subsystems that support continuous states include Enabled
subsystems and Atomic subsystems. However, physical connections and physical
signals must not cross nonvirtual boundaries. When placing Simscape blocks in a
nonvirtual subsystem, make sure to place all blocks belonging to a given Physical
Network in the same nonvirtual subsystem.

• Nonvirtual subsystems that do not support continuous sample time blocks (such as If
Action, For Iterator, Function-Call, Triggered, While Iterator, and so on) cannot
contain Simscape blocks.

• An atomic subsystem with a user-specified (noninherited) sample time cannot contain
Simscape blocks.

• Simulink configurable subsystems work with Simscape blocks only if all of the block
choices have consistent port signatures.

 Limitations

5-45



• When using SimState to save and restore simulations of models, you cannot make any
changes to the Simscape blocks in the model between the time at which you save the
SimState and the time at which you restore the simulation using the SimState.

This is an extension of the Simulink limitation prohibiting structural changes to the
model between these two points in time (see “Limitations of SimState” (Simulink)).
Changes to Simscape block parameters can cause equation changes and result in
changes to the state representation. Therefore, modifying parameters of Simscape
blocks between saving and restoring the SimState is not allowed.

• Linearization with the Simulink linmod function or with equivalent Simulink
Control Design™ functions and graphical interfaces is not supported with Simscape
models if you use local solvers.

• Model referencing is supported, with some restrictions:

• All Physical connection lines must be contained within the referenced model. Such
lines cannot cross the boundary of the referenced model subsystem in the
referencing model.

• The referencing model and the referenced model must use the same solver.
• You cannot create Simulink signal objects directly on the PS-Simulink Converter

block outputs. Insert a Signal Conversion block after the output port of a PS-Simulink
Converter block and specify the signal object on the output of the Signal Conversion
block instead.

Simulink Tools Not Compatible with Simscape Blocks

Some Simulink tools and features do not work with Simscape blocks:

• Execution order tags do not appear on Simscape blocks.
• Simscape blocks do not invoke user-defined callbacks.
• You cannot set breakpoints on Simscape blocks.
• Reusable subsystems cannot contain Simscape blocks.
• You cannot use the Simulink Fixed-Point Tool with Simscape blocks.
• The Report Generator reports Simscape block properties incompletely.

5 Model Simulation

5-46



Code Generation
Code generation is supported for Simscape physical modeling software and its family of
add-on products. However, there are restrictions on code generated from Simscape
models.

• Code reuse is not supported.
• Encapsulated C++ code generation is not supported.
• Tunable parameters are not supported.
• Run-time parameter inlining ignores global exceptions.
• Simulation of Simscape models on fixed-point processors is not supported.
• Block diagnostics in error messages are not supported. This means that if you get an

error message from simulating generated code, it does not contain a list of blocks
involved.

• Conversion of models or subsystems containing Simscape blocks to S-functions is not
supported.

“Code Generation” describes Simscape code generation features. “Restricted Simulink
Tools” on page 5-45 describes limitations on model referencing.

There are variations and exceptions as well in the code generation features of the add-on
products based on Simscape platform. For details, see documentation for individual add-
on products.

Code Generation and Fixed-Step Solvers

Most code generation options for Simscape models require the use of fixed-step Simulink
solvers. This table summarizes the available solver choices, depending on how you
generate code.
Code Generation Option Solver Choices
Accelerator mode
Rapid Accelerator mode

Variable-step or fixed-step

Simulink Coder™ software: RSim Target* Variable-step or fixed-step
Simulink Coder software: Targets other than
RSim

Fixed-step only

* For the RSim Target, Simscape software supports only the Simulink solver module. In
the model Configuration Parameters dialog box, see the Code Generation: RSim

 Limitations

5-47



Target: Solver selection menu. The default is automatic selection, which might fail to
choose the Simulink solver module.

5 Model Simulation

5-48



References

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society for
Industrial and Applied Mathematics, 2004, chapter 7

[2] Horowitz, P., and Hill, W., The Art of Electronics, 2nd Ed., Cambridge, Cambridge
University Press, 1989, chapter 2

[3] Brogan, W. L., Modern Control Theory, 2nd Ed., Englewood Cliffs, New Jersey,
Prentice-Hall, 1985

 References

5-49





Variable Initialization and Operating
Points

• “Block-Level Variable Initialization” on page 6-2
• “Set Priority and Initial Target for Block Variables” on page 6-5
• “Initialize Variables for a Mass-Spring-Damper System” on page 6-7
• “Variable Viewer” on page 6-24
• “Using Operating Point Data for Model Initialization” on page 6-36
• “Initialize Model Using Operating Point from Logged Simulation Data” on page 6-41

6



Block-Level Variable Initialization
In this section...
“Initializing Block Variables for Model Simulation” on page 6-2
“Variable Initialization Priority” on page 6-3
“Suggested Workflow” on page 6-4

Initializing Block Variables for Model Simulation

At the beginning of simulation (t = 0), the solver computes the initial conditions to
determine the simulation starting point, as described in “Initial Conditions Computation”
on page 5-9. Finding a solution means finding initial values for all system variables. You
can affect the initial conditions computation by block-level variable initialization, that is,
by specifying the priority and target initial values for certain variables on the Variables
tab of the respective block dialog boxes.

The values you specify during block-level variable initialization are not the actual values
of the respective variables, but rather their target values at the beginning of simulation
(t = 0). Depending on the results of the solve, some of these targets may or may not be
satisfied.

The solver tries to find a solution that:

• Exactly satisfies all the model equations
• Exactly satisfies all the high-priority targets
• Approximates the low-priority targets as closely as possible (as a result, some of the

low-priority targets might be satisfied exactly, the others are approximated)

If the solver cannot find a solution that exactly satisfies all the high-priority targets, it
issues a warning and enters the second stage of the solve process, where it tries to find a
solution by approximating both the high-priority and the low-priority targets as closely
as possible.

If you have selected the Start simulation from steady state check box in the Solver
block dialog box, the solver attempts to find the steady state (when the system variables
are no longer changing with time). If the steady-state solve succeeds, the state found is
some steady state (within tolerance), but not necessarily the state expected from the
given initial conditions. In other words, if simulation starts from steady state, even the

6 Variable Initialization and Operating Points

6-2



high-priority variable targets might no longer be satisfied at the start of simulation.
However, if the model has more than one steady state, the variable targets you specify
can affect which steady-state solution is selected by the solver.

After you initialize the block variables and prior to simulating the model, you can open
the Variable Viewer to see which of the variable targets have been satisfied. The
Variable Viewer displays the actual initial values of the variables obtained as a result of
the solve, along with the variable target values, priority, and other information about the
variable. For details, see “Variable Viewer” on page 6-24.

Variable Initialization Priority

During block-level variable initialization, you specify the variable beginning value, unit,
and the initialization priority. The priority can be one of the following:

• None — If a variable has priority of none, the initialization algorithm starts at the
beginning value for this variable but does not remember this value as it finds the
solution for the system of equations. The solver does not try to satisfy any specific
initial value for a variable with no priority.

• Low — If a variable has low priority, the beginning value becomes a target for the
algorithm and the algorithm tries to stay close to the target. The solver tries to
approximate the target value of this variable as closely as possible when finding a
solution. Depending on the results of the solve for high-priority variables, some of the
low-priority targets might be met exactly, the others are approximated.

• High — If a variable has high priority, the beginning value becomes a target for the
algorithm and the algorithm tries to meet the target exactly. The solver tries to find a
solution where the actual initial values of all high-priority variables exactly satisfy
their target values.

The default initialization priority, beginning value, and unit for each of the block
variables come from the underlying Simscape component file. For each individual block
in your model, you can override these default settings by opening the Variables tab of
the block dialog box, selecting the Override check box next to a variable name and
specifying your own values for that variable.

When you specify too many high-priority targets for system variables, it is possible to
over-specify your model. In this case, the solver might not be able to find a solution that
exactly satisfies all the high-priority targets, or even fail to find a solution altogether. For
an example of how you can deal with over-specification by using the Variable Viewer and

 Block-Level Variable Initialization

6-3



changing the variable priority and targets, see “Initialize Variables for a Mass-Spring-
Damper System” on page 6-7.

For detailed information on how to specify variable priority and targets in block dialog
boxes, see “Set Priority and Initial Target for Block Variables” on page 6-5.

Suggested Workflow
1 Using the Variables tab of the respective block dialog boxes, specify the variable

targets for initialization, by setting the priority, target values, and units for block
variables as required by your model.

2 Open and refresh the Variable Viewer to see which of the initial targets have been
satisfied. Although the viewer does not simulate the model, it runs the simulation for
0 seconds to initialize it, and therefore the model must be in an executable state.

3 If initialization fails, or you are not satisfied with the results, iterate by changing the
block variable target values and priority, then refreshing the viewer.

4 When satisfied with initialization, run the simulation to see the results.

See Also

More About
• “Set Priority and Initial Target for Block Variables” on page 6-5
• “Initialize Variables for a Mass-Spring-Damper System” on page 6-7
• “Variable Viewer” on page 6-24

6 Variable Initialization and Operating Points

6-4



Set Priority and Initial Target for Block Variables
When you open the Variables tab of a block dialog box, it lists all the public variables
specified in the underlying component file, along with priority, beginning (target) value,
and unit. For example, if you add a Translational Spring block to your model, double-
click it to open its dialog box, and then click the Variables tab, it looks like this:

For details on these variables and their usage in the block equations, click the Source
code link in the block dialog box to view the underlying Simscape source file.

Note The Source code link is available for all the Foundation library blocks that have a
Variables tab. Blocks from the add-on products, like Simscape Electronics™ or
Simscape Fluids, do not have a Source code link in the block dialog box. See the block
reference page for information on relevant equations and specific initialization
considerations.

To specify the initial deformation of the spring, select the Override check box next to the
Deformation variable, to indicate that you are overriding the default values. Select the
initialization priority for the variable, by setting its Priority drop-down to High, Low, or
None. Type a new number into the Beginning Value field and change the unit, if
desired. The Unit drop-down lists contains all the units defined in the unit registry that
are commensurate with the one specified in the variable declaration. In the following

 Set Priority and Initial Target for Block Variables

6-5



dialog box, Deformation is specified as a high-priority variable with the initial target of
20 mm.

If you clear the Override check box next to a variable name, its Priority, Beginning
Value, and Unit fields switch back to defaults specified in the component file. However,
if you select the check box again, these fields will retain their last specified value for
when they were overridden.

See Also

More About
• “Initialize Variables for a Mass-Spring-Damper System” on page 6-7
• “Block-Level Variable Initialization” on page 6-2

6 Variable Initialization and Operating Points

6-6



Initialize Variables for a Mass-Spring-Damper System
This example shows how you can use block variable initialization, and how it affects the
simulation results of a simple mechanical system.

The model is a classical unforced mass-spring-damper system, with the oscillations of the
mass caused by the initial deformation of the spring.

Create and Set Up the Model

1 Create a simple mass-spring-damper system. Use the Mass, Translational Spring,
Translational Damper, Mechanical Translational Reference, Ideal Translational
Motion Sensor, PS-Simulink Converter, Solver Configuration, and Scope blocks, and
connect them as shown in the following illustration.

2 Prepare the model for simulation. On the top menu bar of the model window, select
Simulation > Model Configuration Parameters. Under Solver options, set
Solver to ode23t (mod.stiff/Trapezoidal) and Max step size to 0.2. Also
adjust the Simulation time to be between 0 and 2 seconds, by setting Stop time to
2.0.

3 Specify the initial deformation of the spring. Double-click the Translational Spring
block. In the block dialog box, click the Variables tab, and then select the check box
next to the Deformation variable. Change its Priority to High. Change the
Beginning Value to 0.1. Leave the Unit unchanged as m.

 Initialize Variables for a Mass-Spring-Damper System

6-7



4 Adjust the initial position of the sensor, to compensate for the spring deformation.
Double-click the Ideal Translational Motion Sensor block and set its Initial
position parameter value to 0.1 m as well. This way, when you simulate the model,
mass oscillations center around 0.

5 Simulate the model.

6 Variable Initialization and Operating Points

6-8



6 Open the Variable Viewer. In the top menu bar of the model window, select
Analysis > Simscape > Variable Viewer.

 Initialize Variables for a Mass-Spring-Damper System

6-9



The Translational Spring variable x, in the bottom row, has high priority and the
target value of 0.1 m. This is the Deformation variable that you have just set up in
the block dialog box. Its actual start value matches its target value, and therefore its
Status column displays a green circle.

The other high-priority variable in this model is the position, x, of the Ideal
Translational Motion Sensor block, which is set inside the component file because it
is necessary for the correct operation of the sensor. Its actual start value also
matches its target value, and its Status column also displays a green circle.

The rest of the variables in the model do not have initialization priority specified,
therefore their Status column also displays green circles. The overall status at the
bottom of the Variable Viewer window displays a green circle as well, and says that
all the variable targets are satisfied.

6 Variable Initialization and Operating Points

6-10



Change Initialization Targets

You can now see how specifying different variable targets affects system initialization
and simulation results.

1 Specify the initial velocity of the mass. Double-click the Mass block, go to the
Variables tab, select the check box next to the Velocity variable, change its
Priority to High, and enter a beginning value of 10. Keep the unit m/s.

When you change variable priorities and targets or adjust the block parameters, the
results in the Variable Viewer are not updated automatically. Instead, the Refresh
button displays a warning symbol (yellow triangle), and the timestamp at the bottom
of the viewer window turns red to indicate that the data in the viewer does not
reflect the latest model changes.

 Initialize Variables for a Mass-Spring-Damper System

6-11



2 Refresh the Variable Viewer by clicking .

6 Variable Initialization and Operating Points

6-12



You can see that the solver has found a different initial solution, which satisfies your
variable targets for spring deformation and mass velocity. The Status column
displays green circles, and the overall status at the bottom of the Variable Viewer
window also displays a green circle and says that all the variable targets are
satisfied.

3 Notice that when you refreshed the Variable Viewer, the scopes turned blank. This
happens because solver runs the simulation for 0 seconds to find the initial solution
and display it in the Variable Viewer.

Rerun the simulation and examine the Velocity and Position scope windows, to see
the effect of the new initial value for mass velocity on the simulation results.

 Initialize Variables for a Mass-Spring-Damper System

6-13



Deal with Over-Specification

As you specify additional variable targets, sometimes it is possible to over-specify the
constraints.

6 Variable Initialization and Operating Points

6-14



1 Double-click the Translational Damper block, go to the Variables tab, select the
check box next to the Force variable, change its Priority to High, and enter a
beginning value of 200. Keep the unit N.

2 Refresh the Variable Viewer.

 Initialize Variables for a Mass-Spring-Damper System

6-15



The overall status at the bottom of the Variable Viewer window now displays a red
square and says that the solver is unable to satisfy all the high-priority variable
targets. There are red squares in the Status column for the two high-priority
variables with targets not satisfied, as well as for their parent blocks.

Notice that the solver has been able to find a solution for model initialization. If you
rerun the simulation, it runs without errors and you can see the new simulation
results.

6 Variable Initialization and Operating Points

6-16



However, the Variable Viewer shows that the model initialization solution does not
satisfy your target values for block variables. This happens because placing high-
priority constraints on all three elements of the mass-spring-damper system results
in a conflict. You can resolve the over-specification issue by relaxing the priority of
some of the conflicting variable targets.

 Initialize Variables for a Mass-Spring-Damper System

6-17



3 Double-click the Translational Damper block again, go to the Variables tab, and
change the priority of the Force variable to Low.

4 Refresh the Variable Viewer.

6 Variable Initialization and Operating Points

6-18



The overall status at the bottom of the Variable Viewer window now displays a
yellow triangle and says that all the high-priority targets are satisfied, but some of
the low-priority targets are not satisfied. There are now two yellow triangles in the
status column: one for the low-priority force variable f and one for its parent block,
Translational Damper.

Essentially, the solution found in this case is the same as when you previously
specified high-priority target for the mass velocity on page 6-0 , and the simulation
results are the same.

 Initialize Variables for a Mass-Spring-Damper System

6-19



5 Another way to deal with over-specification is to keep the high priority on the
damper force and relax the priority on mass initial velocity. Double-click the
Translational Damper block again, go to the Variables tab, and change the priority
of the Force variable back to High. Then double-click the Mass block, go to the
Variables tab, and change the priority of the Velocity variable to Low.

6 Variable Initialization and Operating Points

6-20



6 Refresh the Variable Viewer.

 Initialize Variables for a Mass-Spring-Damper System

6-21



Again, the Variable Viewer status says that all the high-priority targets have been
satisfied and that some of the low-priority targets are not satisfied. However,
because you changed the variable priorities, the solver now tried to satisfy the initial
force on the damper rather than the mass velocity, and the solution is different in
this case, as are the simulation results.

6 Variable Initialization and Operating Points

6-22



See Also

More About
• “Block-Level Variable Initialization” on page 6-2
• “Set Priority and Initial Target for Block Variables” on page 6-5
• “Variable Viewer” on page 6-24

 See Also

6-23



Variable Viewer
In this section...
“About Variable Viewer” on page 6-24
“Advanced Configuration” on page 6-27
“Switching Between Tree View and Flat View” on page 6-29
“Useful Filtering Techniques” on page 6-31
“Saving Viewer Configuration” on page 6-32
“Link to Block Diagram” on page 6-32
“Interaction with Model Updates and Simulation” on page 6-34

About Variable Viewer

Prior to simulating the model, you can use the Variable Viewer to check the results of the
initial conditions computation for the model and to see which of the block-level variable
initialization targets have been satisfied. The Variable Viewer displays the variable
priority and target values, where specified, along with the actual initial values for all the
variables obtained as a result of the solve.

To open the Variable Viewer, in the top menu bar of the model window, select Analysis
> Simscape > Variable Viewer.

Note If you open a model, and then open the Variable Viewer before simulating the
model, then the viewer does not contain any data. The Refresh button displays a

warning symbol ( ), and a message at the top of the viewer window tells you to click
the Refresh button to populate the viewer with data.

6 Variable Initialization and Operating Points

6-24



The Variable Viewer is a table, its rows listing all the blocks in the model and all the
public variables under each block, and the columns providing the initialization status,
priority, target and actual start values, and other information for each variable.

By default, the Variable Viewer opens in basic configuration, unless you specified
another configuration as a preferred one. (For information on specifying a preferred
configuration, see “Saving Viewer Configuration” on page 6-32.) In basic configuration,
the Variable Viewer has the following columns:
Name Description
Status Initialization status of each variable, can be one of:

• Green circle — Displayed for variables with initialization targets
satisfied, and also for all variables with no initialization priority.

• Yellow triangle — Displayed for low-priority variables if the
target is not satisfied.

• Red square — Displayed for high-priority variables if the target is
not satisfied.

• Red cross — If initial condition solve fails, displayed for variables
that could not be initialized.

• Gray rectangle — Displayed when status is not available. This
can happen, for example, if model initialization failed, or if the
viewer was left open during diagram update. For more
information, see “Interaction with Model Updates and
Simulation” on page 6-34.

 Variable Viewer

6-25



Name Description
Priority Variable initialization priority, as specified in the block dialog box or

in the underlying component file. For more information, see “Set
Priority and Initial Target for Block Variables” on page 6-5 and
“Variable Priority for Model Initialization”. If the variable has no
initialization priority (None or priority.none), then this field is
empty.

Target Initial target value for a high-priority or low-priority variable. If the
variable has no initialization priority, then this field is empty.

Start The actual initial value of the variable computed by the solver.
Unit The variable base unit, common for all the values (Target, Prestart,

and Start). Simscape unit manager automatically converts all the
values as needed. For example, if you specified the target Beginning
Value in the block dialog box as 20 and the Unit as mm, the Variable
Viewer displays the Target as 0.2 and Unit as m.

A downward-pointing arrow next to a column name indicates that you can filter the table
rows based on their value in this column. For more information on the filtering options,
see “Useful Filtering Techniques” on page 6-31.

The Variable Viewer toolbar buttons perform the following actions:
Displays the data in the Variable Viewer in tree view, with variable nodes grouped
under the parent port, block, and subsystem nodes. This is the default view.
Displays the data in the Variable Viewer in flat view, to minimize the number of
rows in the table. In flat view, the rows for parent nodes are not shown, and the
table contains just one row per variable, with the Name column including the
complete path to the variable from the model root. If the Variable Viewer is in flat
view, the buttons that expand and collapse nodes are disabled.
Expands all nodes, showing all variables under each block name. This button is
available only if the Variable Viewer is in tree view.
Collapses all variables under each block name. You can then expand the block
nodes individually to see the variables under this block. This button is available
only if the Variable Viewer is in tree view.

6 Variable Initialization and Operating Points

6-26



Recomputes the initial conditions for the model and refreshes the values displayed
in the viewer. Use this button after adjusting the block parameter values, changing
variable priorities and targets, or updating the block diagram. If the data in the
Variable Viewer is out of sync with the model, he Refresh button displays a

warning symbol ( ), and the timestamp at the bottom of the viewer window turns
red. For more information, see “Interaction with Model Updates and Simulation” on
page 6-34.
Clears all the column filtering options and displays all the rows in the table. For
more information, see “Useful Filtering Techniques” on page 6-31.
Shows the Variable Viewer in its default, basic, configuration, with only the
following columns displayed: Status, Priority, Target, Start, and Unit.
Shows the Variable Viewer in advanced configuration, with all the columns
displayed. Use this view for troubleshooting your model, for example, if the model
initialization failed.
Saves the current Variable Viewer configuration. For more information, see “Saving
Viewer Configuration” on page 6-32.

Advanced Configuration

In most cases, the default Variable Viewer configuration contains sufficient data for
viewing the variable targets and verifying the model initialization results. However, if
the solver is unable to satisfy all the high-priority variable targets, or if the model
initialization fails, the advanced Variable Viewer configuration might provide additional
data that can help you troubleshoot your model.

To switch to the advanced configuration, click  in the Variable Viewer toolbar.

 Variable Viewer

6-27



In advanced configuration, the Variable Viewer displays the following additional
columns:
Name Description
Prestart The value of the variable that the solver uses at the beginning of the

initial conditions solve process. For variables with no override of
initialization priority and targets, the prestart values come from the
variable declaration in the underlying component file. If the
initialization process fails, these values can help you determine the
reason (for example, a prestart value of 0 for a variable used as a
denominator in a model equation). If a variable has an undesirable
prestart value, specify a better value as a low-priority (or no-priority)
initialization target, to make the solver start iterations from a
different point.

Eliminated These variables are eliminated by the software prior to numerical
integration and are not used in solving the system. Prestart values
for these variables have no effect on the system solution. However,
you can set the initialization priority and targets on these variables,
in which case their targets will be represented in terms of the
variables that are retained by the solver.

6 Variable Initialization and Operating Points

6-28



Name Description
Determined The values of these variables depend on the system inputs, or their

values are predetermined based on the analysis of equations.
Therefore, specifying initialization priority and targets for these
variables has little or no impact on system solution. Also, if you
specify a high-priority target for a predetermined variable, the solver
most likely will not be able to satisfy this target but will spend extra
time trying to find a second-stage solution.

Differential Time derivatives of these variables appear in equations. These
variables add dynamics to the system and can produce independent
states. Therefore, these variables are more likely to require high
initialization priority.

Nominal Nominal value of the variable. For more information, see “System
Scaling by Nominal Values” on page 5-29.

Nominal unit Physical unit associated with the nominal value of the variable. For
more information, see “System Scaling by Nominal Values” on page
5-29.

Nominal source Source of the nominal value and unit: Block, Model, Derived, or
Fixed. For more information, see “Possible Sources of Nominal
Values and Their Evaluation Order” on page 5-30.

You can change the default order of columns by clicking a column heading and dragging
it, while holding down the mouse button, to the desired location. You can also hide
columns by right-clicking their headers and selecting Hide This Column from the

context menu, or clearing the check mark next to a column name. Clicking  or  in
the Variable Viewer toolbar restores the default basic or advanced layout, respectively.

Switching Between Tree View and Flat View

You can control the number of rows in the Variable Viewer by switching between the tree
view (the default) and the flat view. By default, the Variable Viewer opens in tree view,
with variable nodes grouped under the parent port, block, and subsystem nodes.
Therefore, the Variable Viewer table contains the rows for the parent nodes (ports,
blocks, and subsystems) in addition to the rows that correspond to all the public
variables. Only the rows that represent variables contain data such as targets and actual
values. All rows display a status, with the status of a parent node being determined by

 Variable Viewer

6-29



the status of its children variables: if all the children are green, then the row for the
parent node also displays a green circle in its Status column.

For example, in the Variable Viewer table below, the first row represents the Ideal
Translational Motion Sensor block, the second row — port C of this block, and only the
third row contains the data for the actual variable v (velocity at port C).

To switch to the flat view, click  in the Variable Viewer toolbar.

6 Variable Initialization and Operating Points

6-30



In flat view, the rows for parent nodes are not shown, and the table contains just one row
per variable, with the Name column including the complete path to the variable from the
top-level model. For example, the first row of the Variable Viewer table in flat view
represents the same variable v (velocity at port C of the Ideal Translational Motion
Sensor block), and the Name column includes the names of its parents and shows the
path to the variable. Flat view makes the Variable Viewer table more compact.

If the Variable Viewer is in flat view, the buttons that expand and collapse nodes are
disabled.

To switch back to the tree view, click  in the Variable Viewer toolbar.

Useful Filtering Techniques

A downward-pointing arrow next to a column name indicates that you can filter the table
rows based on their value in this column.

To filter the rows, click the arrow, and then select or clear the check boxes in the drop-
down list to indicate which rows you want to be displayed, based on their value. Selecting

All clears all the filters for that column. To clear all filters for all columns, click  in
the Variable Viewer toolbar.

 Variable Viewer

6-31



For example, filtering on the Priority column values (selecting only the check boxes for
HIGH and LOW) lets you view all the targets and actual values in a compact format, which
can be helpful for a large model.

You might also find the following filtering techniques useful in troubleshooting your
models:

• Filter the Differential column on TRUE, to display only the rows for differential
variables. Time derivatives of these variables appear in equations. These variables
add dynamics to the system and can produce independent states, therefore these
variables are more likely to require high initialization priority.

• Filter the Determined column on TRUE, to verify that these variables have no
initialization priority. The values of these variables are either predetermined by the
equation analysis or depend on the system inputs, and therefore specifying
initialization priority and targets for these variables has little or no effect on model
initialization.

Saving Viewer Configuration

The Save Viewer Configuration button ( ) in the Variable Viewer toolbar lets you
save the following configuration preferences:

• Variable Viewer view type (tree or flat)
• Visible columns
• Ordering of columns
• Filters applied for all columns (both visible and hidden)
• Sorting on a specific column

If you save viewer configuration, then the next time you open Variable Viewer, for this or
another model, it will open with the same configuration. This behavior is consistent with
saving other MATLAB preferences.

Link to Block Diagram

The Variable Viewer tool provides direct linking to the block diagram. This link lets you
highlight the appropriate block, or easily go from a variable listed in the Variable Viewer
to the Variables tab in the corresponding block dialog box, to modify the variable
priorities and targets.

6 Variable Initialization and Operating Points

6-32



When you right-click in the Name column of any row in the Variable Viewer table, a
context menu opens with the following options:

• Go to block — Highlights the corresponding block in the block diagram, opening the
appropriate subsystem if needed. If the row represents a variable, highlights the
parent block for this variable.

• Open block dialog — Opens the corresponding block dialog box (for a variable,
opens the parent block dialog box). In the block dialog box, click the Variables tab to
view or modify the variable priorities and targets. If the selected row represents a
subsystem, this option is not available.

 Variable Viewer

6-33



Interaction with Model Updates and Simulation
Opening the Variable Viewer does not trigger an automatic update. For complex models,
computing initial values for all the variables can last several minutes, and unnecessary
updates could lead to loss of productivity. You have to update the data explicitly by

clicking the Refresh button ( ).

When you open the Variable Viewer, it gets populated with the data from the last
simulation. The status at the bottom of the viewer window displays the timestamp of its
last update. If you have modified the model since the viewer has last been updated, the

Refresh button displays a warning symbol ( ), and the timestamp at the bottom of
the viewer window turns red to indicate that the data in the viewer might not reflect the
latest model changes.

If you open a model, and then open the Variable Viewer before simulating the model,
then the viewer does not contain any data. The Refresh button displays a warning
symbol (yellow triangle), and a message at the top of the viewer window tells you to click
the Refresh button to populate the viewer with data.

6 Variable Initialization and Operating Points

6-34



The Variable Viewer computes the actual initial values of the variables by running the
simulation for 0 seconds. Therefore:

• The model must be in an executable state when you refresh the viewer, otherwise you
get an error message.

• If the scopes are open, they turn blank every time you refresh the viewer. Rerun the
simulation to see the new results.

• If you rerun the simulation while the Variable Viewer is open, the results in the
viewer are automatically refreshed when the simulation starts running.

• If you change variable priorities and targets or adjust the block parameters, the
results in the viewer are not updated automatically. Refresh the viewer (by clicking

 in the Variable Viewer toolbar) to compute the new actual values of the variables
and update the status.

• If you update block diagram (by selecting Simulation > Update Diagram in the top
menu bar of the model window) while the Variable Viewer is open, the previously
computed actual values become unavailable and the Status column displays gray
rectangles. The overall status at the bottom of the Variable Viewer window is also not
available. Refresh the viewer to compute the new actual values of the variables and
update the status.

See Also

More About
• “Block-Level Variable Initialization” on page 6-2
• “Initialize Variables for a Mass-Spring-Damper System” on page 6-7

 See Also

6-35



Using Operating Point Data for Model Initialization

In this section...
“Using Operating Points to Initialize Model Variables” on page 6-36
“Suggested Workflow” on page 6-37
“Extracting Variable Initialization Data into an Operating Point” on page 6-37
“Manipulating Operating Point Data” on page 6-38
“Applying Operating Point Data to Initialize Model” on page 6-38

Using Operating Points to Initialize Model Variables

In addition to block-level variable initialization, that is, specifying the priority and target
for individual block variables, you can initialize variables for a whole model from saved
operating point data.

You can use OperatingPoint objects to save sets of data necessary to initialize a model,
manipulate this data, and then use it to initialize another model, or the same model
before another simulation run. These sets of data are comprised of a hierarchy of variable
initialization targets. Each target consists of a variable value, unit, and initialization
priority, as described in “Variable Initialization Priority” on page 6-3.

OperatingPoint data hierarchy is a tree, with nodes corresponding to subsystems and
blocks in a model. At the lowest level of the data tree, inside the block nodes, are the
variable initialization targets for that block.

When you use an OperatingPoint to initialize a model, the solver matches the
OperatingPoint data hierarchy to the model hierarchy and applies the initialization
targets from the operating point to the respective model variables. If there is no variable
matching an operating point target, this target gets ignored. After applying all the data
from the operating point, the solver performs model initialization as described in “Initial
Conditions Computation” on page 5-9.

After you initialize the variables and prior to simulating the model, you can open the
Variable Viewer to see which of the variable targets have been satisfied. For details, see
“Variable Viewer” on page 6-24.

6 Variable Initialization and Operating Points

6-36



Suggested Workflow
1 Create an OperatingPoint object by extracting data from the model or from the

simulation log. For more information, see “Extracting Variable Initialization Data
into an Operating Point” on page 6-37.

2 Modify the operating point data, if needed, by changing, adding, or removing targets
and nodes. For more information, see “Manipulating Operating Point Data” on page
6-38.

3 When satisfied with the operating point data, apply it to initialize another model, or
the same model for another simulation run. For more information, see “Applying
Operating Point Data to Initialize Model” on page 6-38.

Extracting Variable Initialization Data into an Operating Point
You can create an OperatingPoint object by extracting data from an existing model or
from logged simulation data. For more information, see simscape.op.create.

There are multiple ways you can extract variable initialization targets from a model:

• Start values — Initialize the model and use the variable targets corresponding to the
Start values in the Variable Viewer.

• Prestart values — Update the model and use the variable targets corresponding to
the Prestart values in the Variable Viewer.

• Cached data — Extract cached values of variable targets from a model that has been
previously initialized or simulated. You can specify Start or Prestart values. This
method lets you save time by avoiding repeated initialization of the model if the data
that you want to extract has not changed.

Alternately, you can simulate the model while logging simulation data, and then extract
variable targets from the simulation log at a specified time, t:

• If the set of times recorded in simulation data log contains an exact match for time t,
then the simscape.op.create function extracts these variable target values into
the operating point data.

• If there is no exact match, but t is between the minimum and maximum times in the
simulation data log, then the function uses linear interpolation to determine the
target values.

• If t is less than the minimum time, then the function extracts the first value for each
variable in the simulation data log.

 Using Operating Point Data for Model Initialization

6-37



• If t is greater than the maximum time, then the function extracts the last value for
each variable in the simulation data log.

When you extract data from a model into an operating point, the elements in the data
hierarchy of the OperatingPoint object match the structure of the model. The
operating point data tree has nodes corresponding to subsystems and blocks in the
model, with variable initialization targets for each block at the lowest level of the data
tree hierarchy. Similarly, when you extract an operating point from logged simulation
data, the operating point data tree matches the data tree of the simulation log. For an
example, see “Find Relative Path to Block Node in Operating Point Data Tree”.

Manipulating Operating Point Data

You can create an empty OperatingPoint object, or populate it by data extracted from
an existing model or from logged simulation data.

Once you create an OperatingPoint object, you can modify it in a variety of ways:

• Add targets one-by-one. For an example, see “Add Element to an Operating Point”.
• Copy and insert elements. For an example, see “Copy Element from an Operating

Point”. You can then insert the copied element into another operating point using the
set function.

• Remove elements. For an example, see “Remove an Element from Operating Point
Data”.

• Rename or move elements. For an example, see “Rename Element to Match New
Block Name”.

• Merge operating points. For an example, see “Merge Two Operating Points”.

Applying Operating Point Data to Initialize Model

To initialize a model from an operating point:

1 Open the Configuration Parameters dialog box.
2 On the Simscape pane, select the Enable operating point initialization check

box.
3 In the Model operating point textbox, enter the name of the workspace variable

associated with an OperatingPoint object.

6 Variable Initialization and Operating Points

6-38



You can also use the equivalent command-line interface to set the model configuration
parameters:

• set_param('model_name','SimscapeUseOperatingPoints','on');
• set_param('model_name','SimscapeOperatingPoint','op_name');

where model_name is the name of the model and op_name is the name of the
OperatingPoint object.

See Also
simscape.op.OperatingPoint | simscape.op.Target

More About
• “Initialize Model Using Operating Point from Logged Simulation Data” on page 6-

41

 See Also

6-39



• “Variable Viewer” on page 6-24

6 Variable Initialization and Operating Points

6-40



Initialize Model Using Operating Point from Logged Simulation
Data

This example shows how you can create an OperatingPoint object from logged
simulation data and then use this operating point to initialize the model for a subsequent
simulation run.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. This model has data logging enabled for the whole
model, with the Workspace variable name parameter set to
simlog_ssc_dcmotor.

2 Simulate the model to log the simulation data.
3 Examine the simulation results in the Motor RPM scope window.

 Initialize Model Using Operating Point from Logged Simulation Data

6-41

matlab:ssc_dcmotor


For the first 0.1 seconds, the motor has no external load, and the speed builds up to
the no-load value. Then at 0.1 seconds, the stall torque is applied as a load to the
motor shaft.

4 Create an operating point from logged simulation data at 0.1 seconds after the start
of simulation:

op = simscape.op.create(simlog_ssc_dcmotor, 0.1)

op = 

  OperatingPoint with children:
  -----------------------------
   DC Motor
   DC Voltage
   ERef
   Load Torque
   MRRef Motor
   MRRef Torque
   Sensing
  -----------------------------

6 Variable Initialization and Operating Points

6-42



5 Enable model initialization from operating point:

set_param(gcs,'SimscapeUseOperatingPoints','on');

This command is equivalent to selecting the Enable operating point
initialization check box in the Simscape pane of the Configuration Parameters
dialog box.

6 Specify the name of operating point:

set_param(gcs,'SimscapeOperatingPoint','op');

This command is equivalent to entering op in the Model operating point textbox.
7 Simulate the model. The simulation now starts with the full no-load speed.

See Also

More About
• “Log, Navigate, and Plot Simulation Data” on page 11-24

 See Also

6-43



• “Using Operating Point Data for Model Initialization” on page 6-36

6 Variable Initialization and Operating Points

6-44



Linearization and Trimming

• “Finding an Operating Point” on page 7-2
• “Linearizing at an Operating Point” on page 7-6
• “Linearize an Electronic Circuit” on page 7-12
• “Linearize a Plant Model for Use in Feedback Control Design” on page 7-22

7



Finding an Operating Point

In this section...
“What Is an Operating Point?” on page 7-2
“Finding Operating Points in Physical Models” on page 7-3

What Is an Operating Point?

An operating point of a system is a dynamic configuration that satisfies design and use
requirements called operating specifications. You can express such operating
specifications as requirements on the system state x and inputs u. It is not always
possible to find a dynamic state that satisfies all operating conditions. Also, a system
might have multiple operating points satisfying the same requirements.

Operating points are essential for designing and implementing system controllers. You
can optimize a system at an operating point for performance, stability, safety, and
reliability.

The most important and common type of operating point is a steady state, where some or
all of the system dynamic variables are constant.

Using Operating Points for Linearization

An important motive for finding operating points is linearization, which determines the
system response to small disturbances at an operating point. Linearization results
influence the design of feedback controllers to govern dynamic behavior near the
operating point. A full linearization analysis requires one or more system outputs, y, in
addition to inputs.

See “Linearizing at an Operating Point” on page 7-6.

Example

A pilot flying an aircraft wants to find, for a given environment, a state of the aircraft
engine and control surfaces that produces level, constant-velocity, and constant-altitude
flight relative to the ground. The requirements of "level," "constant velocity," "constant
altitude," and "relative to the ground" constitute operating specifications. This operating
point is a steady state of the aircraft velocity, altitude, and orientation in space.

7 Linearization and Trimming

7-2



Finding Operating Points in Physical Models
You have a number of ways to find an operating point in a Simscape model. You can
impose operating specifications and isolate operating points using Simscape and
Simulink features.

Tip To find a steady state, the Simscape steady-state solver is the most direct method.
For a comprehensive suite of operating point and linearization tools, MathWorks
recommends Simulink Control Design software.

To analyze operating points, you work with the full state vector of your model, which
contains:

• Simulink components, which can be continuous or discrete.
• Simscape components, which are continuous.

Whichever method that you choose to find an operating point, if you want to use it for
linearization, you must save the operating point information in the form of an operating
point object, a simulation time t0, or a state vector x0 and input vector u0.

• “Simulating in Time to Search for an Operating Point” on page 7-3
• “Using the Simscape Initial Condition Solver” on page 7-4
• “Using Simulink Control Design Techniques to Find Operating Points” on page 7-4
• “Using Sources to Find Operating Points Not Recommended” on page 7-5
• “Simulink trim Function Not Supported with Simscape Models” on page 7-5

Simulating in Time to Search for an Operating Point

One way to identify operating points is to simulate your model and inspect its state x and
output y as a time series.

1 In your Simscape model, set up sensor outputs for whatever block outputs you want
to observe.

2 Connect Scope blocks, To Workspace blocks, or both, to your Simscape block outputs
to observe and record simulation behavior.

3 In the Data Import/Export pane of your model Configuration Parameters settings,
select the Time, States, and Output check boxes to record this simulation
information in your workspace.

 Finding an Operating Point

7-3



Using the Simscape Initial Condition Solver

Simscape software provides two workflows to initialize a physical model. The first solves
for steady state, where all differential variables have zero derivative. Using this
approach you can search for multiple steady states with the steady-state solver by
varying the model inputs, parameters, and initial conditions. The second approach is to
directly specify initial conditions by specifying initialization priority and targets for block
variables. For more information on this approach, see “Variable Initialization”.

To use the first approach, enable the steady-state solver:

1 In each, some, or all of the physical networks in your Simscape model, open the
Solver Configuration block.

2 In each block dialog box, select the Start simulation from steady state check box.
3 In the model Configuration Parameters settings, on the Data Import/Export pane,

select the States check box to record the time series of x values in your workspace.

If you also have input signals u in the model, you can capture those inputs by
connecting To Workspace blocks to the input Simulink signal lines.

4 Close these dialog boxes and start simulation.

The first vector of values x(t=0) that you capture during simulation reflects the steady
state x0 that the Simscape solver identified.

Tip Finding an initial steady state is part of the nondefault Simscape simulation
sequence. See “Initial Conditions Computation” on page 5-9.

You can simplify the initial steady-state computation by setting the simulation time to 0.
The simulation then solves for one time step only (time zero) and returns a single state
vector x(t=0).

Using Simulink Control Design Techniques to Find Operating Points

You can use Simulink Control Design software to find operating points for models with
Simscape components. Simulink Control Design provides both command-line and
graphical interfaces for finding and analyzing operating points.

For more information, see “Find Steady-State Operating Points for Simscape Models”
(Simulink Control Design).

7 Linearization and Trimming

7-4



Using Sources to Find Operating Points Not Recommended

You can impose an operating specification on part of a Simscape model by inserting
source blocks from the Simscape Foundation Library. These impose specified values of
system variables in parts of the model. You can simulate and save the state vector.

However, you cannot obtain an operating point for the original system (without the
source blocks) by saving the state values from the model and then removing the source
blocks. In general, the number, order, and identity of state components change after
adding and removing Simscape blocks in a model.

Simulink trim Function Not Supported with Simscape Models

The Simulink trim function is not supported for models containing Simscape
components.

 Finding an Operating Point

7-5



Linearizing at an Operating Point

In this section...
“What Is Linearization?” on page 7-6
“Linearizing a Physical Model” on page 7-8

What Is Linearization?

Determining the response of a system to small perturbations at an operating point is a
critical step in system and controller design. Once you find an operating point, you can
linearize the model about that operating point to explore the response and stability of the
system. To find an operating point in a Simscape model, see “Finding an Operating
Point” on page 7-2.

• “What Is a Linearized Model?” on page 7-6
• “Example” on page 7-7
• “Choosing a Good Operating Point for Linearization” on page 7-7

What Is a Linearized Model?

Near an operating point, you can express the system state x, inputs u, and outputs y
relative to that operating point in terms of x – x0, u – u0, and y – y0. For convenience,
shift the vectors by subtracting the operating point: x – x0 → x, and so on.

If the system dynamics do not explicitly depend on time and the operating point is a
steady state, the system response to state and input perturbations near the steady state
is approximately governed by a linear time-invariant (LTI) state space model:

dx/dt = A·x + B·u

y = C·x + D·u.

The matrices A, B, C, D have components and structures that are independent of the
simulation time. A system is stable to changes in state at an operating point if the
eigenvalues of A are negative.

If the operating point is not a steady state or the system dynamics depend explicitly on
time, the linearized dynamics near the operating point are more complicated. The

7 Linearization and Trimming

7-6



matrices A, B, C, D are not constant and depend on the simulation time t0 , as well as the
operating point x0 and u0.

Tip While you can linearize a closed system with no inputs or outputs and obtain a
nonzero A matrix, obtaining a nontrivial linearized input-output model requires at least
one input component in u and one output component in y.

Example

A pilot is flying, or simulating, an aircraft in level, constant-velocity, and constant-
altitude flight relative to the ground. A crucial question for the aircraft pilot and
designers is: will the aircraft return to the steady state if perturbed from it by a
disturbance, such as a wind gust — in other words, is this steady state stable? If the
operating point is unstable, the aircraft trajectory can diverge from the steady state,
requiring human or automatic intervention to maintain steady flight.

Choosing a Good Operating Point for Linearization

Although steady-state and other operating points (state x0 and inputs u0) might exist for
your model, that is no guarantee that such operating points are suitable for linearization.
The critical question is: how good is the linearized approximation compared to the exact
system dynamics?

• When perturbed slightly, a problematic operating point might exhibit strong
asymmetries, with strongly nonlinear behavior when perturbed in one direction and
smoother behavior in another.

• Small perturbations might result in a discontinuous change in a state value, making
the current state unsuitable for linear approximation.

Operating points with a strongly nonlinear or discontinuous character are not suitable
for linearization. You should analyze such models in full simulation, away from any
discontinuities, and perturb the system by varying its inputs, parameters, and initial
conditions. A common example is actuation systems, which should be linearized away
from any hard constraints or end stops.

Tip Check for such an unsuitable operating point by linearizing at several nearby
operating points. If the results differ greatly, the operating point is strongly nonlinear or
discontinuous.

 Linearizing at an Operating Point

7-7



Linearizing a Physical Model

Use the following methods to create numerical linearized state-space models from a
model containing Simscape components.

Tip MathWorks recommends the Simulink Control Design product for linearization
analysis.

• “Independent Versus Dependent States” on page 7-8
• “Linearizing with Simulink Control Design Software” on page 7-9
• “Linearizing with the Simulink linmod and dlinmod Functions” on page 7-9
• “Linearizing with Simulink Linearization Blocks” on page 7-11

Independent Versus Dependent States

An important difference from basic Simulink models is that the states in a physical
network are not independent in general, because some states have dependencies on other
states through constraints.

• The independent states are a subset of system variables and consist of independent
(unconstrained) Simscape dynamic variables and other Simulink states.

• The dependent states consist of Simscape algebraic variables and dependent
(constrained) Simscape dynamic variables.

For more information on Simscape dynamic and algebraic variables, see “How Simscape
Simulation Works” on page 5-6.

The complete, unreduced LTI A, B, C, D matrices have the following structure.

• The A matrix, of size n_states by n_states, is all zeros except for a submatrix of
size n_ind by n_ind, where n_ind is the number of independent states.

• The B matrix, of size n_states by n_inputs, is all zeros except for a submatrix of
size n_ind by n_inputs.

• The C matrix, of size n_outputs by n_states, is all zeros except for a submatrix of
size n_outputs by n_ind.

• The D matrix, of size n_outputs by n_inputs, can be nonzeros everywhere.

7 Linearization and Trimming

7-8



Obtaining the Independent Subset of States

A minimal linearized solution uses only an independent subset of system states. From
the matrices A, B, C, D, you can obtain a minimal input-output linearized model with:

• The minreal and sminreal functions from Control System Toolbox™ software
• Automatically with the Simulink Control Design approach

Linearizing with Simulink Control Design Software

Note The techniques described in this section require the Simulink Control Design
product.

You must use the features of this product on the Simulink lines in your model, not
directly on Simscape physical network lines or blocks.

This approach requires that you start with an operating point object saved from
trimming the model to an operating specification.

To linearize a model with an operating point object, use the linearize function,
customizing where necessary. The resulting state-space object contains the matrices A,
B, C, D.

You can also use the graphical user interface, through the model menu bar: Analysis >
Control Design > Linear Analysis.

For more information on linearizing Simscape models using Simulink Control Design,
see “Linearize Simscape Networks” (Simulink Control Design).

Linearizing with the Simulink linmod and dlinmod Functions

You have several ways that you can use the Simulink functions linmod and dlinmod,
and the linearization results can differ depending on the method chosen. To use these
functions, you do not have to open the model, just have the model file on your MATLAB
path.

For more information about Simulink linearization, see “Linearizing Models” (Simulink).

 Linearizing at an Operating Point

7-9



Tip If your model has continuous states, use linmod. (Continuous states are the
Simscape default.) If your model has mixed continuous and discrete states, or purely
discrete states, use dlinmod.

Linearizing a model with the local solver enabled (in the Solver Configuration block) is
not supported.

Linearizing with Default State and Input

You can call linmod without specifying state or input. Enter linmod('modelname') at
the command line.

With this form of linmod, Simulink linearization solves for consistent initial conditions
in the same way it does on the first step of any simulation. Any initial conditions, such as
initial offset from equilibrium for a spring, are set as if the simulation were starting from
the initial time.

linmod allows you to change the time of externally specified signals (but not the internal
system dynamics) from the default. For this and more details, see the linmod function
reference page.
Linearizing with the Steady-State Solver at an Initial Steady State

You can linearize at an operating point found by the Simscape steady-state solver:

1 Open one or more Solver Configuration blocks in your model.
2 Select the Start simulation from steady state check box for the physical networks

that you want to linearize.
3 Close the Solver Configuration dialog boxes and save the modified model.
4 Enter linmod('modelname') at the command line.

linmod linearizes at the first step of simulation. In this case, the initial state is also an
operating point, a steady state.

For more about setting up the steady-state solver, see the Solver Configuration block
reference page.
Linearizing with Specified State and Input — Ensuring Consistency of States

You can call linmod and specify state and input. Enter linmod('modelname',x0,u0)
at the command line. The extra arguments specify, respectively, the steady state x0 and

7 Linearization and Trimming

7-10



inputs u0 for linearizing the simulation. When you specify a state to linmod, ensure that
it is self-consistent, within solver tolerance.

With this form of linmod, Simulink linearization does not solve for initial conditions.
Because not all states in the model have to be independent, it is possible, though
erroneous, to provide linmod with an inconsistent state to linearize about.

If you specify a state that is not self-consistent (within solver tolerance), the Simscape
solver issues a warning at the command line when you attempt linearization. The
Simscape solver then attempts to make the specified x0 consistent by changing some of
its components, possibly by large amounts.

Tip You most easily ensure a self-consistent state by taking the state from some
simulated time. For example, by selecting the States check box on the Data Import/
Export pane of the model Configuration Parameters dialog box, you can capture a time
series of state values in a simulation run.

Linearizing with Simulink Linearization Blocks

You can generate linearized state-space models from your Simscape model by adding a
Timed-Based Linearization or Trigger-Based Linearization block to the model and
simulating. These blocks combine time-based simulation, up to specified times or
internal trigger points, with state-based linearization at those times or trigger points.

For complete details about these blocks, see their respective block reference pages.

Note If your model contains PS Constant Delay or PS Variable Delay blocks, or custom
blocks utilizing the delay operator in the Simscape language, MathWorks recommends
that you linearize the model by using the Timed-Based Linearization or Trigger-Based
Linearization block and simulating the model for a time period longer than the specified
delay time.

 Linearizing at an Operating Point

7-11



Linearize an Electronic Circuit
This example shows how to linearize a model of a nonlinear bipolar transistor circuit and
create a Bode plot for small-signal frequency-domain analysis.

Depending on the software you have available, use the appropriate sections of this
example to explore various linearization and analysis techniques.

In this section...
“Explore the Model” on page 7-12
“Linearize with Steady-State Solver and linmod Function” on page 7-16
“Linearize with Simulink Control Design Software” on page 7-18
“Use Control System Toolbox Software for Bode Analysis” on page 7-19

Explore the Model
To open the Nonlinear Bipolar Transistor example model, type
ssc_bipolar_nonlinear in the MATLAB Command Window.

The model represents a single-transistor audio amplifier. The transistor is an NPN
bipolar device, and as such has a nonlinear set of current-voltage characteristics.

7 Linearization and Trimming

7-12

matlab:ssc_bipolar_nonlinear


Therefore the overall behavior of the amplifier is dependent on the operating point of the
transistor. The transistor itself is represented by and Ebers-Moll equivalent circuit
implemented using a masked subsystem. The circuit has a sinusoidal input test signal
with amplitude 10 mV and frequency 1 kHz. The Load Voltage scope displays the
resulting collector output voltage after the DC is filtered out by the output decoupling
capacitor.

R1 and R2 set the nominal operating point, and the small signal gain is approximately
set by the ratio R3/R4. The decoupling capacitors C1 and C2 have a capacitance of 1uF,
to present negligible impedance at 1 kHz.

The model is configured for linearization. You can quickly generate and view the small-
signal frequency response by clicking the Linearize circuit hyperlink in model
annotation. To view the MATLAB script that generates the frequency response, click the
next hyperlink in that annotation, see code. This documentation provides background
information and alternative ways of linearization based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency
response, you must specify model-level inputs and outputs. The Nonlinear Bipolar
Transistor model meets this requirement in two ways, depending on how you linearize:

• Simulink requires top- or model-level input and output ports for linearization with
linmod. The Nonlinear Bipolar Transistor model has such ports, marked u and y.

• Simulink Control Design software requires that you specify input and output signal
lines with linearization points. The specified lines must be Simulink signal lines, not
Simscape physical connection lines. The Nonlinear Bipolar Transistor model has such
linearization points specified. For more information on using Simulink Control Design
software for trimming and linearization, see documentation for that product.

Open the Solver Configuration block and see that the Start simulation from steady
state check box is selected. Then open the Load Voltage scope and run the simulation to
see the basic circuit behavior. The transistor junction capacitance initial voltages are set
to be consistent with the bias conditions defined by the resistors. The output is a steady
sinusoid with zero average, its amplitude amplified by the transistor and bias circuit.

 Linearize an Electronic Circuit

7-13

http://www.mathworks.com/products/simcontrol/


To see the circuit relax from a nonsteady initial state, in the Solver Configuration block,
clear the Start simulation from steady state check box and click OK. With the Load
Voltage scope open, simulate again. In this case, the output voltage starts at zero because
the transistor junction capacitances start with zero charge.

7 Linearization and Trimming

7-14



You can get a more comprehensive understanding of the circuit behavior and how it
approaches the steady state by long-time transient simulation. Increase the simulation
time to 1 s and rerun the simulation. The circuit starts from its initial nonsteady state,
and the transistor collector voltage approaches and eventually settles into steady
sinusoidal oscillation.

 Linearize an Electronic Circuit

7-15



Open the Solver Configuration block, select the Start simulation from steady state
check box (as it was when you first opened the model), and click OK. Change the
simulation time back to .01 s and rerun the simulation.

Linearize with Steady-State Solver and linmod Function

In this example, you:

1 Use the Simscape steady-state solver to find an operating point
2 Linearize the model using the Simulink linmod function
3 Generate the Bode plot using a series of MATLAB commands

Open the Solver Configuration block and make sure the Start simulation from steady
state check box is selected. When you simulate the model with the Simscape steady-state
solver enabled, the circuit is initialized at the state defined by the transistor bias
resistors. This steady-state solution is an operating point suitable for linearization.

7 Linearization and Trimming

7-16



Note Also make sure that the Use local solver check box is cleared. Linearizing a model
with the local solver enabled is not supported.

To linearize the model, type the following in the MATLAB Command Window:

[a,b,c,d]=linmod('ssc_bipolar_nonlinear');

You can alternatively call the linmod function with a single output argument, in which
case it generates a structure with states, inputs, and outputs, as well as the linear time-
invariant (LTI) model.

The state vector of the Nonlinear Bipolar Transistor model contains 17 components. The
full model has one input and one output. Thus, the LTI state-space model derived from
linearization has the following matrix sizes:

• a is 17-by-17
• b is 17-by-1
• c is 1-by-17
• d is 1-by-1

To generate a Bode plot, type the following in the MATLAB Command Window:

npts = 100; f = logspace(-2,10,npts); G = zeros(1,npts);
for i=1:npts                                                       
    G(i) = c*(2*pi*1i*f(i)*eye(size(a))-a)^-1*b +d;                
end
subplot(211), semilogx(f,20*log10(abs(G)))                         
grid                                                               
ylabel('Magnitude (dB)')                                           
subplot(212), semilogx(f,180/pi*unwrap(angle(G)))                  
ylabel('Phase (degrees)')                                          
xlabel('Frequency (Hz)')                                           
grid  

 Linearize an Electronic Circuit

7-17



Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

Simulink Control Design software has tools that help you find operating points and
returns a state-space model object that defines state names. This is the recommended
way to linearize Simscape models.

1 In the top menu bar of the Nonlinear Bipolar Transistor model, select Analysis >
Control Design > Linear Analysis .

2 In the Linear Analysis Toolstrip, click the Bode plot button.

7 Linearization and Trimming

7-18



For more information on using Simulink Control Design software for trimming and
linearization, see the Simulink Control Design documentation.

Use Control System Toolbox Software for Bode Analysis

Note To work through this section, you must have a Control System Toolbox license.

You can use the built-in analysis and plotting capabilities of Control System Toolbox
software to analyze and compare Bode plots of different steady states.

First, use the Simulink linmod function to obtain the linear time-invariant (LTI) model.

[a,b,c,d]=linmod('ssc_bipolar_nonlinear');

Not all the states of the LTI model derived in this example are independent. Confirm this
by calculating the determinant of the a matrix, det(a). The determinant vanishes,

 Linearize an Electronic Circuit

7-19



which implies one or more zero eigenvalues. To analyze the LTI model, reduce the LTI
matrices to a minimal realization. Obtain a minimal realization using the minreal
function.
[a0,b0,c0,d0] = minreal(a,b,c,d);

13 states removed.

Extracting the minimal realization eliminates 13 dependent states from the LTI model,
leaving four independent states. Analyze the control characteristics of the reduced a0,
b0, c0, d0 LTI model using a Bode plot.

bode(a0,b0,c0,d0) % Creates first Bode plot

The circuit with R1 changed from 47 to 15 kOhm has a different steady state and
response. Double-click the R1 block, change the Resistance value to 15 kOhm, and click
OK. Open the Load Voltage scope and simulate the model. The collector voltage is now
no longer amplified relative to the 10 mV AC source but attenuated.

Produce the LTI model at the second steady state, reduce it to a minimal realization, and
superpose the second Bode plot on the first one.

7 Linearization and Trimming

7-20



[a_R1,b_R1,c_R1,d_R1]=linmod('ssc_bipolar_nonlinear');
[a0_R1,b0_R1,c0_R1,d0_R1] = minreal(a_R1,b_R1,c_R1,d_R1); % 13 states removed.
hold on % Keeps first Bode plot open
bode(a0_R1,b0_R1,c0_R1,d0_R1) % Superposes second Bode plot on first

For more information on using Control System Toolbox software for Bode analysis, see
the Control System Toolbox documentation.

See Also

Related Examples
• “Linearize a Plant Model for Use in Feedback Control Design” on page 7-22

More About
• “Finding Operating Points in Physical Models” on page 7-3
• “Linearizing a Physical Model” on page 7-8

 See Also

7-21



Linearize a Plant Model for Use in Feedback Control Design
This example shows how you can linearize a hydraulic plant model to support control
system stability analysis and design.

Depending on the software you have available, use the appropriate sections of this
example to explore various linearization and analysis techniques.

In this section...
“Explore the Model” on page 7-22
“Trim Using the Controller and Linearize with Simulink linmod Function” on page 7-
25
“Linearize with Simulink Control Design Software” on page 7-26

Explore the Model

To open the Hydraulic Actuator with Digital Position Controller example model, type
ssc_hydraulic_actuator_digital_control in the MATLAB Command Window. To
display hidden block names for training purposes, select Display and clear the Hide
Automatic Names check box.

The model represents a two-way valve acting in a closed-loop circuit together with a
double-acting cylinder. Double-click the Hydraulic Actuator subsystem to see the model
configuration.

7 Linearization and Trimming

7-22

matlab:ssc_hydraulic_actuator_digital_control


The controller is represented as a continuous-time transfer function plus a transport
delay that allows for computational time and a zero-order hold when implemented in
discrete time. The Linearization I/O points subsystem lets you easily break and restore
the feedback control loop by setting the base workspace variable ClosedLoop to 0 or 1,
respectively.

The model is configured for linearization. You can quickly generate and view the small-
signal frequency response by clicking the Linearize hyperlink in model annotation. To
view the MATLAB script that generates the frequency response, click the next hyperlink
in that annotation, see code. This documentation provides background information and
alternative ways of linearization based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency
response, you must specify model-level inputs and outputs. The Hydraulic Actuator with
Digital Position Controller model meets this requirement in two ways, depending on how
you linearize:

• Simulink requires top- or model-level input and output ports for linearization with
linmod. The model has such ports, marked In1 and Out1.

 Linearize a Plant Model for Use in Feedback Control Design

7-23



• Simulink Control Design software requires that you specify input and output signal
lines with linearization points. The specified lines must be Simulink signal lines, not
Simscape physical connection lines. The model has such linearization points specified.
For more information on using Simulink Control Design software for trimming and
linearization, see documentation for that product.

Open the Load Position scope and simulate the model in a normal closed-loop controller
configuration.

You can see that the model has a quasi-linear steady-state response between 2 and 3
seconds, when the two-way valve is open. Therefore, the state at 2.5 seconds is an
operating point suitable for linearization.

7 Linearization and Trimming

7-24

http://www.mathworks.com/products/simcontrol/


Trim Using the Controller and Linearize with Simulink linmod Function
1 Set the controller parameters.

To specify sample time for controller discrete-time implementation, type the
following in the MATLAB Command Window:

ts = 0.001;

To specify continuous-time controller numerator and denominator, type:

num = -0.5;
den = [1e-3 1];

2 Find an operating point by running closed-loop and selecting the state at 2.5 seconds
when the custom two-way valve is open.

To close the feedback loop, type:

assignin('base','ClosedLoop',1);

To simulate the model and save the operating point information in the form of a
state vector X and input vector U, type:

[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);
X = x(idx,:); U = y(idx);

3 Linearize the model using the Simulink linmod function.

To break the feedback loop, type:

assignin('base','ClosedLoop',0);

To linearize the model, type:

[a,b,c,d] = linmod('ssc_hydraulic_actuator_digital_control',X,U);

Close the feedback loop by typing:

assignin('base','ClosedLoop',1);
4 To generate a Bode plot with negative feedback convention, type the following in the

MATLAB Command Window:

c = -c; d = -d;
npts = 100; w = logspace(-3,5,npts); G = zeros(1,npts);

 Linearize a Plant Model for Use in Feedback Control Design

7-25



for i = 1:npts                                                     
    G(i) = c*(1i*w(i)*eye(size(a))-a)^-1*b +d;                     
end
subplot(211), semilogx(w,20*log10(abs(G)))                         
grid                                                               
ylabel('Magnitude (dB)')                                           
subplot(212), semilogx(w,180/pi*unwrap(angle(G)))                  
ylabel('Phase (degrees)')                                          
xlabel('Frequency (rad/s)')                                        
grid 

Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

7 Linearization and Trimming

7-26



Simulink Control Design software has tools that help you find operating points and
returns a state-space model object that defines state names. This is the recommended
way to linearize Simscape models.

1 In the top menu bar of the Hydraulic Actuator with Digital Position Controller
model, select Analysis > Control Design > Linear Analysis .

2 In the Linear Analysis Tool, in the Operating Point drop-down list, select
Linearize At. Enter simulation snapshot time of 2.5 seconds and click OK.

3 Click the Bode plot button.

For more information on using Simulink Control Design software for trimming and
linearization, see the Simulink Control Design documentation.

 Linearize a Plant Model for Use in Feedback Control Design

7-27



See Also

Related Examples
• “Linearize an Electronic Circuit” on page 7-12

More About
• “Finding Operating Points in Physical Models” on page 7-3
• “Linearizing a Physical Model” on page 7-8

7 Linearization and Trimming

7-28



Simscape Run-Time Parameters

• “About Simscape Run-Time Parameters” on page 8-2
• “Show Simscape Run-Time Parameter Settings” on page 8-5
• “Manage Simscape Run-Time Parameters” on page 8-7
• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Troubleshoot Simscape Run-Time Parameter Issues” on page 8-13
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ”

on page 8-15
• “Improve Parameter-Sweeping Efficiency Using Simscape Run-Time Parameters”

on page 8-18
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters”

on page 8-21

8



About Simscape Run-Time Parameters
Simscape run-time parameters are MATLAB variables or Simulink.Parameter objects
that are run-time configurable. By default, run-time configurable parameters are
noninlined during code generation. As such, they are coded not as constants, but as
variables with values that you can change before or between simulations without
recompiling the model.

Simscape run-time parameters help you work more efficiently than compile-time
configurable parameters because they allow you to forgo model recompiling when you
change parameter values:

• Between fast-restart, iterative simulations on a development computer
• In referenced models on a development computer
• In the generated code in a Rapid Accelerator (Rsim) mode or on real-time target

hardware

For more information on using Simscape run-time parameters for these types of
simulation, see “Improve Parameter-Sweeping Efficiency Using Simscape Run-Time
Parameters” on page 8-18.

By default, all Simscape block parameters are compile-time configurable parameters.
You cannot change the value of a compile-time configurable parameter in the model or in
generated code without recompiling the model. Therefore, you can change the value of
compile-time parameters only in the plant model on your development computer. To
specify a Simscape block parameter as run-time configurable, change the run-time
configuration setting, which appears next to the dialog box for the parameter, from
Compile-time to Run-time. The figure shows a run-time configuration setting for the
Constant voltage parameter of a Simscape voltage supply block.

For an example that shows how to specify and change Simscape run-time parameters on
development and target computers, see “Specify and Change a Simscape Run-Time
Parameter” on page 8-10 and “Change Parameter Values on Target Hardware” on page
9-163.

8 Simscape Run-Time Parameters

8-2



Simscape supports run-time configurability for some, but not all, dialog box parameters.
To determine if you can specify a particular parameter as a Simscape run-time
parameter, examine the block dialog box run-time setting for the parameter. If an
enabled run-time setting appears next to the parameter on the block dialog box, you can
specify the parameter as run-time configurable. If there is no run-time setting, or if the
setting is not enabled, then the parameter is strictly compile-time configurable. You
cannot specify a strictly compile-time configurable parameter as a Simscape run-time
parameter.

While Simscape run-time parameters can make iterative simulation more efficient, using
them can decrease the efficiency of code that you generate. Code that contains compile-
time or inlined run-time parameters is more computationally efficient because it does not
have to store or retrieve parameter values. If you set the default parameter behavior for
code generation to inlined, the generated code algorithm inlines the numeric values of all
block parameters as constants.

For information that can help you decide when to inline Simscape run-time parameters,
see “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page
8-21. To learn how to inline Simscape run-time parameters, see “Manage Simscape
Run-Time Parameters” on page 8-7.

Simscape run-time parameters are similar to, but different from Simulink tunable
parameters. For example, you can forgo recompiling when you change the value of a
tunable parameter while a simulation is either running or stopped. You can change the
value of a run-time configurable parameter, without having to recompile the model, only
if you do so while the simulation is stopped. For more information on differences between
the two types of parameters, see “How Simscape Run-Time Parameters and Simulink
Tunable Parameters Differ” on page 8-15.

See Also

More About
• “Show Simscape Run-Time Parameter Settings” on page 8-5
• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Change Parameter Values on Target Hardware” on page 9-163
• “Manage Simscape Run-Time Parameters” on page 8-7

 See Also

8-3



• “Troubleshoot Simscape Run-Time Parameter Issues” on page 8-13
• “Improve Parameter-Sweeping Efficiency Using Simscape Run-Time Parameters”

on page 8-18
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page

8-21
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on

page 8-15

8 Simscape Run-Time Parameters

8-4



Show Simscape Run-Time Parameter Settings
You use block dialog box parameter settings to specify Simscape run-time parameters.
However, Simscape block dialog box parameter settings do not show run-time settings
unless you set the MATLAB preference to do so. To display run-time parameter settings
for run-time configurable Simscape parameters by default:

1 To open the Preferences dialog box, on the MATLAB Home tab, in the
Environment section, click the Preferencesbutton.

2 In the left pane of the dialog box, select Simscape.
3 Select the Show run-time parameter settings check box.

Preferences take effect and remain persistent across MATLAB sessions.

 Show Simscape Run-Time Parameter Settings

8-5



See Also

More About
• “About Simscape Run-Time Parameters” on page 8-2
• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Manage Simscape Run-Time Parameters” on page 8-7

8 Simscape Run-Time Parameters

8-6



Manage Simscape Run-Time Parameters
By default, all Simscape parameters are compile-time configurable parameters. If you
change the value of a compile-time parameter, recompile before simulating the modified
model. If you want to change the value without recompiling between iterative
simulations or in generated code, you must specify a Simscape dialog box parameter as a
run-time configurable parameter.

Show Simscape Run-Time Parameter Settings

You use block dialog box parameter settings to configure Simscape run-time parameters.
However, Simscape block dialog box parameter settings do not show run-time parameter
settings unless you set the default behavior to do so in MATLAB preferences. For an
example that shows you how to set the default behavior to show run-time settings for
supported Simscape parameters, see “Show Simscape Run-Time Parameter Settings” on
page 8-5.

Specify Simscape Run-Time Parameters

Some Simscape block parameters are strictly compile-time configurable parameters. You
cannot specify strictly compile-time configurable parameters as run-time configurable
parameters. To determine if a particular Simscape parameter is supported for run-time
configurability, examine the block dialog box settings for the parameter. If an enabled
run-time setting appears next to the parameter on the block dialog box, you can specify
the parameter as run-time configurable. To do specify Run-time for the setting. You can
change the run-time setting on the dialog box from Compile-time to Run-time at any
time before you generate code from your Simscape model.

The figure shows an enabled run-time setting for the Constant voltage parameter of a
Simscape block. If there is no run-time setting for a parameter, or if the setting is
disabled, then the parameter is strictly compile-time configurable.

 Manage Simscape Run-Time Parameters

8-7



Simscape run-time parameters are changeable by variable, not by field. That is, to
simulate without recompiling after a parameter change, you cannot simply update the
value of the parameter in the dialog box setting where you specify the numeric value.
You change the value of the variable that represents the parameter in the workspace or
in the generated code. To do so, you first:

1 Specify the parameter as a variable in the dialog box setting.
2 Save the numeric value for the variable to the MATLAB workspace.

For an example that shows how to specify a Simscape run-time parameter using a
variable, see “Specify and Change a Simscape Run-Time Parameter” on page 8-10.

Set the Default Parameter Behavior for Generated Code

By default, you can change the value of a Simscape run-time parameter while the
simulation is stopped without having to recompile the model. If you change the default
parameter behavior for code generation to inlined, the generated code algorithm inlines
the numeric values of all the block parameters as constants. The code that you generate
using inlined parameters is more computationally efficient because it does not have to
store or retrieve parameter values.

To set the default behavior for Simscape run-time parameters, on the Model
Configuration Parameters > Optimization > Signal and Parameters dialog box,
select the Default parameter behavior. Options are:

• Inline — The Simulink Coder algorithm hard-codes the numeric values of all the
block parameters as constants in the generated C code, rendering them non-
modifiable.

• Tunable — Simulink Coder generates data structures that you can modify to change
parameters without recompiling between simulation runs.

Selectively Override the Inline Default Behavior

While computational cost increases if you specify Simscape parameters in your model as
run-time configurable, the cost increase is not proportional to the number of parameters
that you so specify. If you declare a single parameter as run-time configurable, the
computational cost increases sharply. The cost increases less per parameter for any
additional Simscape run-time parameters that you specify. Therefore, even if the
computational cost for your model decreases greatly with inlining, it decreases only

8 Simscape Run-Time Parameters

8-8



slightly for each Simscape run-time parameter that you selectively inline. However if
your model is at risk of overrunning and it contains Simscape run-time parameters, you
might decrease the computational cost enough to prevent overruns by selectively
excluding only a few Simscape run-time parameters from inlining.

To inline with exceptions, set the Default parameter behavior to Inline and use the
Model Parameter Configuration dialog box to remove individual parameters from
inlining.

See Also

More About
• “Optimization Pane: Signals and Parameters” (Simulink)
• “Model Callbacks” (Simulink)
• “About Simscape Run-Time Parameters” on page 8-2
• “Show Simscape Run-Time Parameter Settings” on page 8-5
• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Change Parameter Values on Target Hardware” on page 9-163
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page

8-21
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on

page 8-15

 See Also

8-9



Specify and Change a Simscape Run-Time Parameter

Prerequisites

Show Simscape Run-Time Parameter Settings

You use block dialog box parameter settings to specify Simscape run-time parameters.
However, Simscape block dialog box parameter settings do not show run-time settings
unless you set the default behavior to do so using MATLAB preferences. For an example
that shows you how to set the default behavior to show run-time parameter settings for
run-time configurable Simscape parameters, see “Show Simscape Run-Time Parameter
Settings” on page 8-5.

Set the Default Parameter Behavior for Code Generation

Simscape run-time parameters depend on the default parameter behavior setting for
code generation. To enable run-time configurability for a Simscape run-time parameter
so that you can change its value without recompiling your model, you can:

• Set the default to tunable
• Set the default inline, and override the default behavior for the parameter with the

value that you want to change.

For information on setting and overriding the default behavior for Simscape run-time
parameters, see “Manage Simscape Run-Time Parameters” on page 8-7.

Specify a Parameter as Run-Time Configurable

The PM DC Motor example model contains a DC Voltage block. You parameterize the
block by specifying the Constant voltage for the source. The voltage is supported as a
Simscape run-time parameter. To specify Constant voltage as a run-time configurable
parameter:

1 To open model, at the MATLAB command prompt, enter:

ssc_dcmotor
2 From the model window, access the parameter settings for the DC Voltage block.
3 To specify Constant voltage as a Simscape run-time parameter, for the run-time

setting, select Run-time.

8 Simscape Run-Time Parameters

8-10



4 Specify the Constant voltage parameter value as the variable vDC.
5 Assign a numeric the value to the variable in the MATLAB workspace:

vDC = 5;

Change a Simscape Run-Time Parameter Using Fast Restart

To see how altering the value of a run-time configurable parameter can affect simulation
results, change the value of the Constant voltage parameter between iterative fast-
start simulations.

1
To enable fast restart, click the Fast restart icon  on the Simulink Editor
toolbar.

2 To simulate the model, click the Run button on the Simulink Editor toolbar.
3 Open the Motor RPM scope block. Autoscale to see the results better.

4 Assign a different value to the variable that represents voltage:

vDC = 1.5;
5 Simulate the model.

 Specify and Change a Simscape Run-Time Parameter

8-11



6 Open the Motor RPM scope block.

The results reflect the change in value for the run-time parameter.

See Also

More About
• “About Simscape Run-Time Parameters” on page 8-2
• “Manage Simscape Run-Time Parameters” on page 8-7
• “Change Parameter Values on Target Hardware” on page 9-163
• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using

RSim System Target File” (Simulink Coder)
• “How Acceleration Modes Work” (Simulink)
• “Simulate a Model Using Fast Restart” (Simulink)
• “Fast Restart Workflow” (Simulink)
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on

page 8-15

8 Simscape Run-Time Parameters

8-12



Troubleshoot Simscape Run-Time Parameter Issues

Simscape Run-Time Parameter Setting Not Visible

If a Simscape parameter is potentially run-time configurable, a configuration setting
appears on the tab that contains the settings for the parameter. If the setting is enabled,
you can use it to specify the parameter as either a run-time or compile-time configurable
parameter. If the configuration setting is not visible, then either the parameter is strictly
compile-time configurable or the Simscape option for showing run-time parameter
settings is not enabled. To see how to enable the option, see “Show Simscape Run-Time
Parameter Settings” on page 8-5.

Simulation Does Not Respond to Simscape Run-Time Parameter
Change

If you use an expression to define a variable for a Simscape run-time parameter, you
might not be able to change the parameter without model recompilation. When an
unsupported expression is encountered during code generation, a warning is issued and
the equivalent numeric value is generated in the code. For information on the limitations
for using expressions for run-time configurable parameters, see “Preservation of
Expressions” (Simulink Coder).

If you change the value of a Simscape run-time parameter during a simulation, the
results do not reflect the value change. For a run-time configurable parameter change to
take effect, you make the change when the simulation is stopped. To see how to change
the value of a Simscape run-time parameter, see “Specify and Change a Simscape Run-
Time Parameter” on page 8-10 and “Change Parameter Values on Target Hardware” on
page 9-163.

See Also

More About
• “About Simscape Run-Time Parameters” on page 8-2
• “Show Simscape Run-Time Parameter Settings” on page 8-5
• “Manage Simscape Run-Time Parameters” on page 8-7

 Troubleshoot Simscape Run-Time Parameter Issues

8-13



• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Change Parameter Values on Target Hardware” on page 9-163
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on

page 8-15

8 Simscape Run-Time Parameters

8-14



How Simscape Run-Time Parameters and Simulink Tunable
Parameters Differ

Simscape run-time parameters and Simulink tunable parameters both allow you to
change the values of parameters on your development or target computer without model
recompilation. However, they differ in these important ways:

• You can change the value of a Simulink tunable parameter while a simulation is
running. Simscape run-time parameters are run-time configurable. You cannot
change the value of a run-time configurable parameter during simulation. You can
only change the value of a run-time configurable parameter when a simulation is
stopped.

• Simulink tunable parameters are tunable by default. Simscape block parameters are
compile-time configurable by default. To make a Simscape block parameter run-time
configurable, you specify it as such.

• Simulink tunable parameters are tunable-by-field. You can change a tunable
parameter simply by changing the numeric value using the block dialog box
parameter setting. Simscape run-time parameters are tunable-by-variable. To change
the value of a Simscape run-time parameter, you:

1 Specify a variable for the parameter in the block dialog box setting.
2 Use input tools, such as the command prompt, callbacks, scripts, or MAT-files, to

assign a value for the variable in the MATLAB workspace.
3 Use input tools to change the value for the variable.

• For code generation, you specify the Default parameter behavior as Tunable or
Inlined. You cannot modify inlined parameters in generated code because the
compiler specifies them as constants. You can change the values of tunable
parameters in generated code because the compiler specifies them as modifiable
global variables or structure fields.

If you set the default behavior to Tunable, the compiler specifies all Simscape run-
time parameters and Simulink tunable parameters as modifiable entities in the
generated code. However, if you set the default behavior to Inlined, the compiler
inlines only the Simscape run-time parameters. The Simulink tunable parameters are
still generated as modifiable entities in the code. To change the value of a particular
Simscape run-time parameter in the generated code when the default behavior is
inlined, you declare that parameter as an exception to inlining.

 How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ

8-15



The table shows the state, mode, and code section in which you can change a run-time
parameter or run-time configurable parameter.

Machine Simulink
Simulation Mode

Simulation Status Section of
generated
code that
you modify

Simscape
run-time
parameter
is
modifiable

Simulink
tunable
parameter
is
modifiable

Development Normal SimulationStatus
is stopped

Not
Applicable

(NA)
Yes Yes

Development Normal SimulationStatus
is running NA No Yes

Development
or Target

Normal,
Accelerator,

Rapid
Accelerator, SIL,
PIL, or External

SimulationStatus
is stopped NA Yes Yes

Development
or Target

Normal,
Accelerator,

Rapid
Accelerator, SIL,
PIL, or External

SimulationStatus
is running NA No Yes

Target Normal, SIL,
PIL, or External

SimulationStatus
is stopped

Setup-
function Yes Yes

8 Simscape Run-Time Parameters

8-16



Machine Simulink
Simulation Mode

Simulation Status Section of
generated
code that
you modify

Simscape
run-time
parameter
is
modifiable

Simulink
tunable
parameter
is
modifiable

Target Normal, SIL,
PIL, or External

SimulationStatus
is running

• Step-
function

for a
Simulin
k global
variable

• Externa
l code
for a

Simulin
k

parame
ter

object

No Yes

Between normal mode simulations, as long as your changes do not affect the structure of
the model, you can forgo recompiling by using fast restart when you change Simscape
run-time and Simulink tunable parameters.

See Also

More About
• “Change Parameter Values on Target Hardware” on page 9-163
• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Specify and Change a Simscape Run-Time Parameter” on page 8-10
• “Code Regeneration in Accelerated Models” (Simulink)
• “About Simscape Run-Time Parameters” on page 8-2
• “Manage Simscape Run-Time Parameters” on page 8-7
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page

8-21

 See Also

8-17



Improve Parameter-Sweeping Efficiency Using Simscape Run-
Time Parameters

Simscape run-time parameters are run-time configurable. They allow you to forgo
recompiling if you change parameter values between iterative simulations during
parameter surveys. You can only test a single value for a compile-time configurable
parameter without recompiling your model.

You can benefit from this advantage when you perform parameter sweeps using fast
restart, model referencing, or code generation. Code generation allows you to update
Simscape run-time parameters between simulation runs using:

• Rapid Simulation (Rsim) on development or target hardware
• Real-time simulation on target hardware

Model Referencing with Run-Time Configurable Parameters
You can use Simulink Model blocks to represent one model within another. Each
instance of a Model block represents a reference to another model, called a referenced
model. For simulation and code generation, the referenced model effectively replaces the
Model block that references it. To change the behavior of a referenced model without
recompiling, specify a Simscape run-time parameter value in the referenced model using
either global parameters or model arguments.

For information on using and parameterizing referenced models, see “Overview of Model
Referencing” (Simulink) and “Parameterize Instances of a Reusable Referenced Model”
(Simulink).

Code Generation with Run-Time Configurable Parameters
Simscape run-time parameters are run-time configurable. They allow you to test your
design over a range of values for plant parameters without recompiling or redeploying
code. You can:

• Change the value of a Simscape run-time parameter in both your plant model and in
your generated code on your development computer for a rapid or real-time
simulation.

• Update a run-time configurable parameter in your deployed code before you run your
simulation as an executable on an external target machine.

8 Simscape Run-Time Parameters

8-18



For an example that uses Simscape run-time parameters for real-time simulation see
“Change Parameter Values on Target Hardware” on page 9-163.

Note The Rapid Accelerator (Rsim) mode uses portions of the Simulink Coder product to
create an executable. These modes replace the interpreted code normally used in
Simulink simulations, shortening model run time. Although Rsim uses Simulink Coder
code generation technology, you do not need Simulink Coder software on your
development computer to accelerate your model with Rsim.

Fast Restart with Simscape Run-Time Parameters

Changing parameter values does not require model recompiling between simulation runs
unless the changes alter the model structurally. However, when you use normal mode
simulation without fast restart, each simulation compiles the model. The compiling
occurs even if the new values do not change the structure of the model and each
recompile increases the overall simulation time.

With Simulink fast restart, you can modify Simscape run-time parameters from the
workspace variable, without recompiling. For an example that shows how to specify a
Simscape run-time parameter and change the parameter value using fast restart, see
“Specify and Change a Simscape Run-Time Parameter” on page 8-10.

See Also

More About
• “About Simscape Run-Time Parameters” on page 8-2
• “Manage Simscape Run-Time Parameters” on page 8-7
• “Change Parameter Values on Target Hardware” on page 9-163
• “Simulate a Model Using Fast Restart” (Simulink)
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page

8-21
• “Overview of Model Referencing” (Simulink)
• “How Fast Restart Improves Iterative Simulations” (Simulink)
• “Choosing a Simulation Mode” (Simulink)

 See Also

8-19



• “Code Regeneration in Accelerated Models” (Simulink)
• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using

RSim System Target File” (Simulink Coder)

8 Simscape Run-Time Parameters

8-20



Decrease Computational Cost by Inlining Simscape Run-Time
Parameters

Simscape run-time parameters tend to increase the complexity of your code and,
therefore, the computational cost of simulating your model. While the additional cost is
not typically problematic for desktop simulation, it could result in a CPU overload during
real-time simulation.

Consider decreasing the complexity of your model by inlining Simscape run-time
parameters in your model, if your simulation:

• Generates small steps during model preparation. For information, see “Real-Time
Model Preparation Workflow” on page 9-6.

• Has a long execution time when you are configuring your model for real-time
simulation. For information, see “Real-Time Simulation Workflow” on page 9-91.

• Overruns during real-time simulation on target hardware.

For information on inlining Simscape run-time parameters, see “Manage Simscape Run-
Time Parameters” on page 8-7.

See Also

More About
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Improving Speed and Accuracy” on page 9-12
• “About Simscape Run-Time Parameters” on page 8-2
• “Manage Simscape Run-Time Parameters” on page 8-7
• “Change Parameter Values on Target Hardware” on page 9-163

 Decrease Computational Cost by Inlining Simscape Run-Time Parameters

8-21





Real-Time Simulation

• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Improving Speed and Accuracy” on page 9-12
• “Determine Step Size” on page 9-17
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Partition a Model” on page 9-79
• “Manage Model Variants” on page 9-88
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Real-Time Simulation Workflow” on page 9-91
• “Solvers for Real-Time Simulation” on page 9-97
• “Troubleshooting Real-Time Simulation Issues” on page 9-102
• “Determine System Stiffness” on page 9-104
• “Estimate Computation Costs” on page 9-111
• “Choose Step Size and Number of Iterations” on page 9-114
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Code Generation Requirements” on page 9-142
• “Software and Hardware Configuration” on page 9-144
• “Signal and Parameter Visualization and Control” on page 9-146
• “Troubleshoot Hardware-in-the-Loop Simulation Issues” on page 9-148
• “Generate, Download, and Execute Code” on page 9-150
• “Check for Target Hardware Overruns” on page 9-153
• “Change Parameter Values on Target Hardware” on page 9-163

9



• “Requirements for Using Alternative Platforms” on page 9-172
• “Extending Embedded and Generic Real-Time System Target Files” on page 9-174
• “Precompiled Static Libraries” on page 9-176
• “Initialization Cost” on page 9-177

9 Real-Time Simulation

9-2



Model Preparation Objectives

In this section...
“Obtain Reference Results” on page 9-3
“Determine Step Size” on page 9-3
“Adjust Model Fidelity or Scope” on page 9-4

The main goal of model preparation is to ensure that your model is real-time capable.
Your model is real-time capable if it is both:

• Accurate enough to generate simulation results that match your expectations, as
based on theoretical models and empirical data

• Fast enough to run on your real-time target machine without overruns

During model preparation, you obtain reference results and determine step size to assess
the likelihood that your model is real-time capable. If it is unlikely that your model is
real-time capable, you adjust the model scope or fidelity to make real-time simulation
with your model feasible.

Obtain Reference Results

Moving your model from desktop simulation to real-time simulation is an iterative
process that can require extensive model reconfiguration. During model preparation, you
obtain reference results from a variable-step simulation of your original model. These
results provide a baseline against which you can judge the accuracy of your modified
models.

Determine Step Size

In terms of speed, the only way to know if your model is real-time capable is to test for
overruns while simulating on real-time hardware. You can, however, analyze solver
execution speed using desktop simulation to determine if your model is probably fast
enough for real-time simulation. You do so by analyzing the steps of a variable-step
solver to find the maximum step size to use for sufficiently accurate real-time simulation
results. If the required step size appears small enough to cause an overrun on your real-
time hardware, you increase the step size by improving simulation speed.

 Model Preparation Objectives

9-3



Adjust Model Fidelity or Scope

You can adjust the fidelity or scope of your model to increase speed or accuracy.
Adjustments include:

• Deleting or adding blocks or modifying block parameters to eliminate or reduce the
effects of elements that introduce numerical stiffness or cause discontinuities.
Simulations take small steps to calculate accurate solutions for these types of
elements.

• Modifying elements or parameters to increase simulation efficiency. For example,
simplify graphics that require excessive processing power or including lookup tables
instead of utilizing processing power to calculate known values.

• Partitioning independent networks of the model to enable parallel processing.

You can also adjust solver settings to help to make your model real-time capable. For
real-time simulation on target hardware, you use a fixed-step, fixed-cost solver that
bounds the computation cost, that is, the time the solver takes to execute each time step.
You configure the solver parameters before deploying it to a real-time target machine.
The fixed-step solver settings that you adjust to improve the real-time viability of your
model include step size, solver type, and number of iterations.

Due to the number of options, it is challenging to find the right combination of model
size, model fidelity, and solver parameters to achieve real-time simulation. The
relationship between speed and accuracy also makes it hard to find both system and
solver configurations that help to make your model real-time capable. If you increase
speed, you are likely to decrease accuracy. Conversely, increasing accuracy tends to
decrease speed. It is especially difficult to achieve acceptable speed and accuracy if you
try to adjust model fidelity and scope while you are changing fixed-step solver settings. A
better approach to find the optimal configuration is to change only one or two related
settings, analyze how those changes affect simulation speed and accuracy, and then
make other adjustments.

The real-time model preparation and the real-time simulation workflows separate the
configuration changes into two different step-wise processes. For the real-time model
preparation workflow, you adjust only the size or fidelity of your model and use variable-
step simulation to analyze the effects of your changes. For the real-time simulation
workflow, you adjust only the solver parameters and you use fixed-step, fixed-cost
simulation to analyze how the changes affect the speed and accuracy of your model.

9 Real-Time Simulation

9-4



See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Partition a Model” on page 9-79
• “Manage Model Variants” on page 9-88

More About
• “Improving Speed and Accuracy” on page 9-12
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Real-Time Model Preparation Workflow” on page 9-6
• “Real-Time Simulation Workflow” on page 9-91

 See Also

9-5



Real-Time Model Preparation Workflow
In this section...
“Prepare Your Model for Real-Time Simulation” on page 9-8
“Insufficient Computational Capability for Workflow Completion” on page 9-10

The figure shows the real-time model preparation workflow.

9 Real-Time Simulation

9-6



A real-time-capable model is both fast and accurate. When you simulate a real-time-
capable model on your real-time target machine, it runs to completion and generates
results that match your expectations, as based on theoretical models and empirical data.
The only way to determine if your model is real-time capable is to run it on your real-
time target machine. You can, however, use desktop simulation, that is, simulation on
your development computer, to determine the likelihood that your model is real-time
capable before you deploy it.

 Real-Time Model Preparation Workflow

9-7



The real-time model preparation workflow is the first of two workflows that you perform
on your development computer to make it more probable that your model is real-time
capable. The workflow shows you how to adjust the size or fidelity of your model to
improve speed without sacrificing and accuracy. When you finish this workflow, use the
real-time simulation workflow to find the best fixed-step, fixed-cost solver configuration
to use for simulating your model in real time.

Prepare Your Model for Real-Time Simulation
Obtain Reference Results

Use empirical or theoretical data to design and build your Simscape model. Use a
Simulink global variable-step solver to simulate your model. Refine your model as needed
to obtain simulation results that the underlying data supports. Reference results provide
a baseline to assess model accuracy against throughout all stages of the model
preparation and real-time simulation workflows.

Evaluate Overrun Risk

An overrun occurs when the step size is too small to allow the real-time computer to
complete all the processing required for any one step. If your model requires a step size
that is so small that it is likely to cause an overrun, then your model is not fast enough
for real-time simulation. To determine if small steps are likely to cause an overrun,
create a plot of the size of the steps that the variable-step step solver uses to execute the
simulation of your model. The step size plot tells you the number and size of the small
steps that the solver uses during the simulation.

There are no hard metrics for the size or number of small steps that are likely to cause a
real-time-simulation overrun. Moving your model from desktop simulation to real-time
simulation is an iterative process. The process, which involves modifying, simulating,
and analyzing your model, helps you to determine if the small steps in your model are
time limiting or numerous enough to force an overrun.

Experience that you gain by simulating different models on your real-time machine can
also help you decide if the small steps in your model are likely to force an overrun. For
example, consider a case with two models, M1 and M2, and two different real-time
processors, RT1 and RT2. Processors RT1 and RT2 have the same nominal processing
speed. Models M1, a mechanical model, and M2, an electrical model, both have a few
steps that are 1e-15 seconds. It is possible for model M1 to simulate with sufficiently
accurate results on real-time processor RT1, but to incur an overrun or simulate with
insufficiently accurate results on real-time processor RT2. It is also possible that model

9 Real-Time Simulation

9-8



M1 runs to completion with accurate results on RT1 and RT2, whereas model M2
generates an overrun on both processors. These scenarios are possible because the
distinct model topologies yield different dynamics and because nominal processing speed
is not the only determinant for simulation execution time. Other factors such as the
operating system and I/O configuration also affect how simulation execution proceeds on
a real-time processor. Familiarity with system dynamics and the processing power of
your real-time equipment can guide your decision making when you assess the impact of
small step sizes on the real-time viability of a model.

Adjust Model Fidelity or Scope

Modify the model to increase speed or accuracy if your analysis indicates that real-time
simulation with the model is likely to have an overrun or yield insufficiently accurate
results.

When you evaluate overrun risk, if you find that the simulation uses too many small
steps, use these approaches to improve simulation speed:

• Reduce computation costs.
• Reduce numerical stiffness.
• Reduce zero crossings.
• Reduce fast dynamics
• Partition the model for parallel processing.

When you evaluate model accuracy, if you find that the simulation results do not match
the reference results, use these approaches to improve model accuracy:

• Simulink best practices for modeling dynamic systems
• Simscape essential modeling techniques

Obtain Results with a Variable-Step Solver

Using a Simulink global variable-step solver, obtain results for the modified version of
your model.

The step size plot also helps you to:

• Estimate the maximum step size to use for the fixed-step solver to achieve accurate
results during real-time simulation.

• Identify the exact times when discontinuities or fast dynamics slow down the
simulation.

 Real-Time Model Preparation Workflow

9-9



Evaluate Model Accuracy

Compare the results from simulating on the target computer to your reference results.
Are the reference and modified model results the same? If not, are they similar enough
that the empirical or theoretical data also supports the results from the simulation of the
modified model? Is the modified model representing the phenomena that you want it to
measure? Is it representing those phenomena correctly? If you plan on using your model
to test your controller design, is the model accurate enough to produce results that you
can rely on for system qualification? The answers to these questions help you to decide if
your real-time results are accurate enough.

Perform Real-Time Simulation Workflow

When variable-simulation results indicate that your model has the speed and accuracy
required for real-time processing, you can use the “Real-Time Simulation Workflow” on
page 9-91 to configure your model for fixed-step, fixed-cost simulation.

Return to the Real-Time Model Preparation Workflow

The connector is an entry point for returning to the real-time model preparation
workflow from another workflow (for example, the real-time simulation workflow or the
hardware-in-the-loop simulation workflow).

Insufficient Computational Capability for Workflow Completion

It is possible that your real-time target machine lacks the computational capability for
running your model in real time. If, after multiple iterations of the workflow, there is no
level of model complexity that makes your model real-time capable, consider these
options for increasing processing power:

• “Upgrading Target Hardware” on page 9-15
• “Simulating Parts of the System in Parallel” on page 9-15

See Also

Related Examples
• “Determine Step Size” on page 9-17

9 Real-Time Simulation

9-10



• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Partition a Model” on page 9-79
• “Manage Model Variants” on page 9-88

More About
• “Essential Physical Modeling Techniques” on page 1-15
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Improving Speed and Accuracy” on page 9-12
• “Model Preparation Objectives” on page 9-3
• “Modeling Dynamic Systems” (Simulink)
• “Real-Time Simulation Workflow” on page 9-91

 See Also

9-11



Improving Speed and Accuracy
In this section...
“Why Speed and Accuracy Matter for Real-Time Simulation” on page 9-12
“Balancing Speed and Accuracy” on page 9-13
“Eliminating Effects That Require Intensive Computation” on page 9-14
“Optimizing Local and Global Solver Configurations” on page 9-15
“Upgrading Target Hardware” on page 9-15
“Simulating Parts of the System in Parallel” on page 9-15

Why Speed and Accuracy Matter for Real-Time Simulation

Speed and accuracy are the determining factors for making your model real-time capable.
Your model is real-time capable if it satisfies both of these conditions when you simulate
it on your particular target hardware:

• There are no overruns.
• The simulation results meet your criteria for accuracy.

Speed is objective. The real-time clock determines whether your model is fast enough for
real-time simulation. For each step that your solver takes, your real-time hardware
system tracks the time that it takes to complete these processing tasks:

• Execute the simulation.
• Process input and output.
• Perform general computer tasks.

An overrun occurs when, for any time step, the time that it takes your system to
complete the processing tasks exceeds the real-time limit for the tasks. If your target
machine reports any overruns when you use it to simulate your model, your model is not
fast enough for real-time simulation.

Your Simscape model is accurate if it produces results that agree with the empirical and
theoretical data that are the basis for your model. Accuracy is more subjective when the
foundation and simulation data are similar, but are not in absolute agreement. To
determine if your model is accurate enough for real-time simulation when the data do not
match perfectly, consider these questions:

9 Real-Time Simulation

9-12



• Is the model representing the phenomena that you want it to measure?
• Is it representing those phenomena correctly?
• If you plan to use your model to test your controller design, is the model accurate

enough to produce results that you can rely on for system qualification?

The only way to test whether your model is real-time capable is to run it on your actual
real-time target hardware using fixed-step, fixed-cost solvers. You can, however, estimate
whether the model is both fast and accurate enough for real-time simulation by
analyzing the results from desktop simulation. To estimate whether your model is real-
time capable, see “Determine Step Size” on page 9-17 and “Estimate Computation
Costs” on page 9-111.

If the analysis from the desktop simulation indicates that your model likely is not real-
time capable, increase model speed or accuracy before deploying your model to your real-
time target machine. Increasing the speed of your simulation tends to decrease the
accuracy, and conversely increasing accuracy decreases speed. To make your model real-
time capable, maintain a balance between speed and accuracy.

Balancing Speed and Accuracy

Simulation speed and accuracy correlate to your choices for:

• Model fidelity and scope
• Real-time hardware computing power
• Solver sample time (step size) and number of iterations

To try to increase simulation speed, potentially at the expense of accuracy:

• Decrease model fidelity or scope.
• Increase sample time.
• Decrease the number of solver iterations.

To try to increase simulation accuracy, potentially at the expense of speed:

• Increase model fidelity or scope.
• Decrease sample time.
• Increase the number of solver iterations.

 Improving Speed and Accuracy

9-13



To try to increase both accuracy and speed, or either one without sacrificing the other,
increase computing power. To increase computing power, use a faster real-time processor
or compute in parallel.

The type of solver that you specify also affects simulation speed and accuracy. For fixed-
step simulation, Simscape local solvers are faster and as accurate as Simulink global
solvers. Implicit solvers are faster, but less accurate than explicit solvers. However, the
numerical stiffness of the network is also a determinant for deciding whether to use an
implicit solver or an explicit solver. Explicit solvers yield more accurate results for
numerically stiff networks.

For more information on how model complexity affects speed and accuracy, see
“Eliminating Effects That Require Intensive Computation” on page 9-14. For more
information, on how solver configurations affect speed and accuracy, see “Optimizing
Local and Global Solver Configurations” on page 9-15.

It is possible that there is no combination of model complexity and solver settings that
can make your model real-time capable. If the simulation does not run in real time on the
target machine, or if the accuracy is unacceptable, consider these options for increasing
speed and accuracy:

• “Upgrading Target Hardware” on page 9-15
• “Simulating Parts of the System in Parallel” on page 9-15

Eliminating Effects That Require Intensive Computation

If your desktop simulation analysis indicates that your model likely is not fast enough for
real-time simulation, eliminate effects that require intensive computation. Identify
elements in your model that cause costly effects, such as discontinuities and rapid
changes, that tend to slow down simulations.

Elements that cause discontinuities include:

• Hard stops or backlash
• Stick-slip friction
• Switches or clutches

Elements with small time constants that cause rapid changes include:

• Small masses attached to stiff springs with minimal damping

9 Real-Time Simulation

9-14



• Electrical circuits with low capacitance, inductance, and resistance
• Hydraulic circuits with small compressible volumes

To eliminate or modify the elements that are responsible for the effects that slow down
your simulation, use these approaches:

• Replace nonlinear components with linearized versions.
• Replace complex equations with lookup tables for their solution.
• Replace complicated components with simplified models.
• Smooth discontinuous functions (step changes) with filters, delays, and other

techniques.

Optimizing Local and Global Solver Configurations

You can also influence the speed and accuracy of your simulation by way of your solver
specifications. The level of accuracy that your real-time target machine delivers does not
necessarily correlate to a specific step size across all networks in a single model. A real-
time target machine can give accurate results for a simple network in your model but
inaccurate results for a more complex network. Take advantage of the ability to specify
different solver configurations for each network in your Simscape model. To help make
your model real-time capable, configure your fixed-step global solver and each local
solver individually.

For information on solver options and determining the solvers that help to make your
Simscape model real-time capable, see “Solvers for Real-Time Simulation” on page 9-97.

Upgrading Target Hardware

Different targets give varying levels of accuracy when using the same step size to
simulate the same model. You can speed up or increase the accuracy of the real-time
simulation by using a faster real-time target computer.

Simulating Parts of the System in Parallel

Another approach for increasing speed while maintaining accuracy is to configure your
model to evaluate multiple physical networks in parallel. You can partition your model if
the networks are not dependent upon one another. Work with and experiment with your
model, the generated code, and the real-time target machine to use this approach.

 Improving Speed and Accuracy

9-15



See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Partition a Model” on page 9-79

More About
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Solvers for Real-Time Simulation” on page 9-97

9 Real-Time Simulation

9-16



Determine Step Size
For the first step in “Real-Time Model Preparation Workflow” on page 9-6, you obtain
results from a variable-step simulation of the reference version of your Simscape model.
The reference results provide a baseline against which you can assess the accuracy of
your model as you modify it. This example shows how to analyze the reference results
and the step size that the variable-step solver takes to:

• Estimate the maximum step size that you can use for a fixed-step simulation
• Identify events that have the potential to limit the maximum step size

Discontinuities and rapid changes require small step sizes for accurately capturing these
dynamics. The maximum step size that you can use for a fixed-step simulation must be
small enough to ensure accurate results. If your model contains such dynamics, then it is
possible that the required step size for accurate results, Tsmax, is too small. A step size
that is too small does not allow your real-time computer to finish calculating the solution
for any given step in the simulation.

The analysis in this example helps you to estimate the maximum step size that fixed-step
solvers can use and still obtain accurate results. You can also use the analysis to
determine which elements influence the maximum step size for accurate results. For
more information on how obtaining reference results and performing a step-size analysis
helps you to prepare your model for real-time simulation, see “Model Preparation
Objectives” on page 9-3.

1 To open the reference model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_reference';
open_system(model)

 Determine Step Size

9-17



2 Simulate the model:

sim(model)
3 Create a semilogarithmic plot that shows how the step size for the solver varies

during the simulation.

h1 = figure;
semilogy(tout(1:end-1),diff(tout),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')

9 Real-Time Simulation

9-18



For much of the simulation, the step size is greater than the value of the Tsmax in the
plot. The corresponding value, ~0.001 seconds, is an estimated maximum step size
for achieving accurate results during fixed-step simulation with the model. To see
how to configure the step size for fixed-step solvers for real-time simulation, see
“Choose Step Size and Number of Iterations” on page 9-114.

The x markers in the plot indicate the time that the solver took to execute a single
step at that moment in the simulation. The step-size data is discrete. The line that
connects the discrete points exists only to help you see the order of the individual
execution times over the course of the simulation.

A large decrease in step size indicates that the solver detects a zero-crossing event.
Zero-crossing detection can happen when the value of a signal changes sign or

 Determine Step Size

9-19



crosses a threshold. The simulation reduces the step size to capture the dynamics for
the zero-crossing event accurately. After the solver processes the dynamics for a
zero-crossing event, the simulation step size can increase. It is possible for the solver
to take several small steps before returning to the step size that precedes the zero-
crossing event. The areas in the red boxes contain variations in recovery time for the
variable step solver.

4 To see different post-zero-crossing behaviors, zoom to the region in the red box at
time (t) = ~1 second.

Script for Zooming In

h1;
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 10e0;
xZoomStart1 = 1.001;
xZoomEnd1 = 1.028;
yZoomStart1 = 1.5e-15;
yZoomEnd1 = 3.71e-3;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

9 Real-Time Simulation

9-20



After t = 1.005 seconds, the step size decreases from ~10e-3 seconds to less than
10e-13 seconds to capture an event. The step size increases quickly to ~10e-5
seconds, and then slowly to ~10e-4 seconds. The step size decreases to capture a
second event and recovers quickly, and then slowly to the step size from before the
first event. The slow rates of recovery indicate that the simulation is using small
steps to capture the dynamics of elements in your model. If the required step size
limits the maximum fixed-step size to a small enough value, then an overrun might
occur when you attempt simulation on your real-time computer.

The types of elements that require small step size are:

• Elements that cause discontinuities, such as hard-stops and stick-slip friction

 Determine Step Size

9-21



• Elements that have small time constants, such as small masses with undamped,
stiff springs and hydraulic circuits with small, compressible volumes

The step size recovers more quickly after it slows down to process the event that
occur befores t = 1.02 seconds. This event is less likely to require small step sizes to
achieve accurate results.

5 To see different types of slow solver recoveries, zoom to the region within the red box
at t = ~4.2 seconds.

h1;
xZoomStart2 = 4.16;
xZoomEnd2 = 4.24;
yZoomStart2 = 10e-20;
yZoomEnd2 = 10e-1;
axis([xZoomStart2 xZoomEnd2 yZoomStart2 yZoomEnd2]);

9 Real-Time Simulation

9-22



Just as there are different types of events that cause solvers to slow down, there are
different types of slow solver recovery. The events that occur just before t = 4.19 and
4.2 seconds both involve zero-crossings. The solver takes a series of progressively
larger steps as it reaches the step size from before the event. The large number of
very small steps that follow the zero crossing at Slow Recovery A indicate that the
element that caused the zero crossing is also numerically stiff.

The quicker step-size increase after the event that occurs at t = 4.2 seconds indicates
that the element that caused the zero crossing before Slow Recovery B, is not as stiff
as the event at Slow Recovery A.

6 To see the results, open the Simscape Results Explorer.

sscexplore(simlog)

 Determine Step Size

9-23



7 Examine the angular speed. In the Simscape Results Explorer window, in the
simulation log tree hierarchy, select Measurements > Ideal Rotational Motion
Sensor > w.

8 To add a plot of the gas flow, select Measure Flow > Pneumatic Mass & Heat
Flow Sensor and then, use Ctrl+click to select G_ps.

9 Real-Time Simulation

9-24



The slow recovery times occur when the simulation initializes, and approximately at
t = 1, 4, 5, 8, and 9 seconds. These periods of small steps coincide with these times:

• The motor speed is near zero rpm (simulation time t = ~ 1, 5, and 9 seconds)
• The step change in motor speed is initiated from a steady-state speed to a new

speed (time t = ~ 4 and 8 seconds)
• The step change in flow rate is initiated from a steady-state speed to a new flow

rate (time t = ~ 4 and 8 seconds)
• The volumetric flow rate is near zero kg/s (t = ~ 1, 4, and 5 seconds)

These results indicate that the slow step-size recoveries are most likely due to
elements in the model that involve friction or that have small, compressible volumes.

 Determine Step Size

9-25



To see how to identify the problematic elements and modify them to increase
simulation speed, see “Reduce Numerical Stiffness” on page 9-56 and “Reduce Zero
Crossings” on page 9-66.

See Also

Related Examples
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Choose Step Size and Number of Iterations” on page 9-114

More About
• “About Simulation Data Logging” on page 11-2
• “Events and Zero Crossings” on page 5-3
• “Improving Speed and Accuracy” on page 9-12
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Real-Time Simulation Workflow” on page 9-91
• “Solvers for Real-Time Simulation” on page 9-97
• “Stiffness” on page 5-3
• “Zero-Crossing Detection” (Simulink)

9 Real-Time Simulation

9-26



Reduce Computation Costs
In this section...
“Data Logging and Monitoring Guidelines” on page 9-27
“Improve Data Logging and Monitoring Efficiency” on page 9-28
“Additional Methods for Reducing Computational Cost” on page 9-31

In this section...
“Data Logging and Monitoring Guidelines” on page 9-27
“Improve Data Logging and Monitoring Efficiency” on page 9-28
“Additional Methods for Reducing Computational Cost” on page 9-31

Computational cost is a measure of the number and the complexity of tasks that a
processor performs per time step during a simulation. Lowering the computational cost of
your model increases simulation execution speed and helps you to avoid overruns when
you simulate in real time on target hardware.

Data Logging and Monitoring Guidelines

Data logging and monitoring are interactive procedures that consume memory and
processing power. One way to reduce computational cost is to reduce the amount of
interactive processing that occurs during simulation. Best practices for limiting
computational costs while logging and monitoring data are:

• Use an outport block only if you need to log data for your analysis via the Simulink
model on your development computer.

• Use a scope block only if you need to monitor data during real-time simulation via the
Simulink model on your development computer.

• If you need to log data or monitor a variable, limit the number or the decimation of
data points that you collect whenever your analysis requirements permit you to do so.

• Log data only once.
• If you use Simscape data logging, use local settings to log only the blocks that contain

variables that you need for your analysis.

Note Simscape simulation data logging is not supported for generated code.

 Reduce Computation Costs

9-27



Improve Data Logging and Monitoring Efficiency

Examine the configuration of the model and the simulation results to determine if the
model is logging and monitoring data efficiently.

1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_zc_redux';
open_system(model)

The model contains three scope blocks and one outport block. The Power (kW) scope,
RPM scope, and outport block receive data from the Measurements subsystem.

2 Simulate the model:

sim(model)

9 Real-Time Simulation

9-28



The model logs five variables to the workspace, including a Simscape simulation
data logging node.

3 To determine the source for the Pneu_rts_RPM_DATA, in the MATLAB workspace,
open the structure. Alternately, at the command line, enter:

Pneu_rts_RPM_DATA.blockName

ans =

    'ssc_pneumatic_rts_zc_redux/RPM'

The blockName variable shows that the RPM scope logs the data. In the model, the
outport that logs data to yout connects to the signal between the Measurements
subsystem and the RPM scope block.

4 To compare the data that Pneu_rts_RPM_DATA andyout log, plot both data sets to a
single figure.

h1 = figure;
plot(tout,yout)
h1;
hold on
plot(Pneu_rts_RPM_DATA.time,Pneu_rts_RPM_DATA.signals.values,'r--')
title('Speed')
xlabel('Time (s)')
ylabel('Speed (rpm)')
h1Leg = legend({'yout','Pneu-rts-RPM-DATA'});

 Reduce Computation Costs

9-29



The data is the same, which means that you are logging the same data twice.

To reduce the computational cost for logging or monitoring the speed data via the
Simulink model on your development computer during real-time simulation:

• If you only need to log the speed data, delete the RPM scope block.
• If you need to log and monitor the speed data, delete the outport block.
• If you only need to monitor the speed data, delete the outport block and disable data

logging for the RPM scope.

If you do not need to log or monitor the speed data via the Simulink model on your
development computer during real-time simulation with target hardware, delete both the
RPM scope block and the outport block.

9 Real-Time Simulation

9-30



If you want to reduce costs by deleting the scope and outport blocks, but you want to log
data while you prepare your model for real-time simulation, configure the model to log
only the data that you need. To do so, use a simlog node in the MATLAB workspace. For
information, see “Log Data for Selected Blocks Only” on page 11-6.

Additional Methods for Reducing Computational Cost

In addition to reducing the number of logged and monitored signals, you can use these
methods for decreasing the number and complexity of tasks that the processor performs
per time step during simulation:

• Avoid using large images and complex graphics.
• Disable unnecessary error and warning diagnostics.
• Reconfigure tolerances.
• Simplify complex subsystems or replace them with lookup tables.
• Linearize nonlinear effects.
• Eliminate redundant calculations, for example, multiplication by one.
• Reduce the number of differential algebraic equations (DAEs).

See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66
• “Partition a Model” on page 9-79

More About
• “About Simulation Data Logging” on page 11-2
• “Limitations” on page 11-3

 See Also

9-31



• “Improving Speed and Accuracy” on page 9-12
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Real-Time Simulation Workflow” on page 9-91

9 Real-Time Simulation

9-32



Reduce Fast Dynamics
You can make your model real-time capable by identifying and reducing sources of fast or
high-frequency dynamics. A real-time capable model is one that produces acceptable
results on a real-time machine without generating overruns.The example shows you how
to identify fast dynamics by examining the frequency response and pole locations of a
linearized model. It also shows how to identify and remove sources of the fast dynamics.

Why Reduce Fast Dynamics

Models with fast dynamics typically have a high computational cost. Removing fast
dynamics decreases the computational cost and increases the minimum step size that
you can specify for a fixed-step, fixed-cost simulation. Using a larger step size increases
the likelihood that your model is real-time capable.

Frequency-Response Analysis

Frequency response describes the steady-state response of a system to sinusoidal inputs.
For a linear system, a sinusoidal input results in an output that is a sinusoid with the
same frequency, ω, but with a different amplitude and phase, θ.

 Reduce Fast Dynamics

9-33



Frequency analysis shows how amplitude and phase change over a given range of
frequencies. For a small change in frequency, a large magnitude or phase change
indicates that a system has fast dynamics. This example uses Bode plots, which allow
you to see how the amplitude, in terms of magnitude in dB, and phase vary as a function
of frequency.

Pole Analysis

Fast poles are also indicative of fast dynamics. Fast poles are poles that respond or
oscillate rapidly. Poles that have real components that are far to the left of the imaginary
axis on the complex plane have a fast response speed. Complex pole pairs that have
imaginary components that are far from the real axis oscillate rapidly. For example, the
real pole at -1500 has a faster response speed than the real pole at -1000 and the complex
pole pair at -500 ± 1500i has a faster oscillation speed than the complex pole pair at -500
± 500i.

9 Real-Time Simulation

9-34



For state-space models, the poles are the eigenvalues of the A-matrix. This example
shows you how to examine pole speed by determining the state-space model and then,
calculating and plotting the eigenvalues of the A-matrix values.

Linearize the Model

The model in this example is not linear. Before performing the frequency-response and
pole analyses, trim, that is extract and specify operating points for linearization, and
linearize the model.

1 Open and examine the model. At the MATLAB command prompt, enter:

%% Open the model
open_system('ssc_hydraulic_actuator_digital_control')

 Reduce Fast Dynamics

9-35



In addition to signal-generation, operation, routing, and visualization blocks, the
model contains these blocks:

• Controller— A Transfer Fcn block that defines a continuous time representation
of the control system. A callback function for the model saves the numerator,
num, and denominator, den, of the transfer function as variables in the
workspace.

•

— A Transport Delay block to represent the delays associated with
computational delay and the sample-and-hold function when deploying a discrete-
time implementation of the continuous time control system.

• Linearization I/O points— A subsystem that allows you to configure the
system as a closed loop, for trimming, or as an open loop, for linearization. The
callback function for the model configures the system as closed loop by setting
ClosedLoop to 1 in the workspace.

• Hydraulic Actuator — A subsystem that contains the physical model of the
plant.

2 Find a suitable operating point for linearizing the system. Simulate the model,
extract the data from the Simscape logging nodes, then plot and examine the results.

Script for Simulating the Model and Plotting the Results

%% Simulate the model and plot the simulation results
% Simulate the model
sim('ssc_hydraulic_actuator_digital_control')

% Extract simulation results from the Simscape logging nodes
simlog1 = simlog_ssc_hydraulic_actuator_digital_control;

9 Real-Time Simulation

9-36



pCylA1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve1 = simlog1.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Plot simulation results 
h3_ssc_hydraulic_actuator_digital_control=figure('Name',...
    'ssc_hydraulic_actuator_digital_control',...
    'Outerposition', [1244 673 576 513]);

% Plot pressures
ah(1) = subplot(2,1,1);
plot(pCylA1.time,pCylA1.values,'LineWidth',6,'Color','b');
hold on
plot(pCylB1.time,pCylB1.values,'LineWidth',3,'Color','b');
hold off
grid on
ylabel('Pressure (Pa)');
title('Cylinder Pressures');
legend({'Side A','Side B'},'Location','Best');

% Plot valve activity
ah(2) = subplot(2,1,2);
plot(aValve1.time,aValve1.values,'LineWidth',3,'Color','b');
grid on
title('Valve Opening vs. Time');
ylabel('Opening (m^2)');
xlabel('Time (s)');
linkaxes(ah,'x');

% Create legend
legend('Original','Location','southeast');

 Reduce Fast Dynamics

9-37



The custom two-way valve is open when the simulation time, t, is between 2 and 3
seconds.

3 Trim the model. Perform closed-loop simulation, using t = 2.5 seconds, when the
valve is open, for the operating point.

Script for Trimming the Model

%% Trim the model
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            
X = x(idx,:); 
U = y(idx);

9 Real-Time Simulation

9-38



4 Linearize an open-loop configuration of the continuous time model and save the state
variables, a, b, c, and d in the workspace using the linmod function.

Script for Linearizing the Model

%% Linearize the model
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop

Perform Frequency-Response and Pole-Speed Analyses
1 Generate a Bode plot.

Script for Generating a Bode Plot

%% Calculate and plot the frequency response
% Generate data
npts = 100;
w = logspace(-3,5,npts); 
G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

% Create Bode plot figure
h4_ssc_hydraulic_actuator_digital_control=figure...
    ('Name','hydraulic_actuator_digital_control');

% Plot magnitude
ah(1) = subplot(2,1,1);
magline_h=semilogx(w,20*log10(abs(G)));
xlim(ah(1),[w(1),w(end)]);
grid on
ylabel('Magnitude (dB)');
title('Frequency Response (Hydraulic Actuator)');

% Plot phase
ah(2) = subplot(2,1,2);
phsline_h=semilogx(w,180/pi*unwrap(angle(G)));
set([magline_h,phsline_h],'LineWidth',1);
ylabel('Phase (deg)'); 
xlabel('Frequency (Hz)');
grid on

 Reduce Fast Dynamics

9-39



linkaxes(ah,'x');

% Create legend
legend('Original','Location','southwest');

When the frequency, ω, is between 102 and 103 Hz, the phase drops by approximately
600 degrees. The rapid change in the phase shift, θ, indicates that the system has
fast dynamics.

2 Calculate eigenvalues of the a matrix using the eig function and plot the poles in
the complex plane.

9 Real-Time Simulation

9-40



Script for Calculating and Plotting the A-Matrix Eigenvalues

%% Calculate and plot the poles
% Extract the poles
poles = eig(a);

% Extract the real and imaginary coordinates
X1 = real(poles); 
Y1 = imag(poles);

% Create complex plane plot figure
h5_ssc_hydraulic_actuator_digital_control = figure('Name',...
    'hydraulic_actuator_digital_control',...
    'OuterPosition',[668 150 1137 512]);

% Create axes
axes1 = axes('Parent',h5_ssc_hydraulic_actuator_digital_control,...
    'Position',[0.0315 0.112 0.932 0.815]);
hold(axes1,'on');

% Create title
title('Complex Plane Plot');

% Plot poles
plot(X1,Y1,'DisplayName','Original Poles','Marker','*',...
    'MarkerSize',3,'LineStyle','none');

% Limit and label axes
xlim(axes1,[-3000 500]);
xlabel({'Real','Axis'});
ylim(axes1,[-2000 2000]);
ylabel({'Imaginary',' Axis'});
set(axes1,'XAxisLocation','origin','YAxisLocation','origin');
box(axes1,'on');

% Create legend
legend(axes1,'show','Original','Location','southwest');

 Reduce Fast Dynamics

9-41



There are six fast poles, including two potential oscillating pole pairs.
3 Confirm that there are pole pairs. Print the values of the six fast poles to the

command window using the eigs function.

Script for Printing Pole Values

%% Print fast-pole values
eigs(a,6)

ans =

   1.0e+03 *

  -2.0000 + 1.1547i
  -2.0000 - 1.1547i
  -0.4614 + 1.4208i
  -0.4614 - 1.4208i
  -1.0314 + 0.0000i
  -1.0000 + 0.0000i

There are two sets of pole pairs.

9 Real-Time Simulation

9-42



Identify and Eliminate the Sources of Fast Dynamics

Examine the model for potential sources of fast dynamics.

1 To linearize the model, this example uses the linmod function. The documentation
for the linmod advises against using the function to linearize a model that contains
a Transport Delay block. The documentation for the Transport Delay block indicates
that the Pade approximation for a linearization routine can add dynamic states to a
model. Determine if the block is the source of the fast poles that result in the
linearized model.

2 To simulate the model without the effects of the Transport Delay block, comment
through the block.

Script for Commenting Out Transport Delay Block

%% Eliminate Transport Delay block from the network
set_param('ssc_hydraulic_actuator_digital_control/Transport Delay',...
    'Commented','through')

The icon for the Transport Delay fades to indicate that it is commented through.
3 To examine the frequency response of the model without the effects of the Transport

Delay block, trim, linearize, and simulate the model, and then, update the Bode plot.

Script for Trimming and Linearizing the Model and Updating the Bode Plot

%% Trim, Linearize, and update the Bode plot.
% Trim
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            

 Reduce Fast Dynamics

9-43



X = x(idx,:); 
U = y(idx);

% Linearize
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop

% Generate data 
npts = 100; w = logspace(-3,5,npts); G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

% Update the Bode plot figure
figure(h4_ssc_hydraulic_actuator_digital_control);
hold on
ah(1) = subplot(2,1,1);
hold on
magline_h=semilogx(w,20*log10(abs(G)),'--');
xlim(ah(1),[w(1),w(end)]);
ah(2) = subplot(2,1,2);
hold on
phsline_h=semilogx(w,180/pi*unwrap(angle(G)),'--');
set([magline_h,phsline_h],'LineWidth',1);
linkaxes(ah,'x');
legend('Original','No Transport Delay','Location','southwest');

9 Real-Time Simulation

9-44



When the frequency, ω, is between 102 and 103 Hz, the phase drops by only by ~250
degrees.

4 Calculate and plot the fast poles.

Script for Calculating and Plotting the A-Matrix Eigenvalues

%% Calculate and plot the poles
% Extract the poles
poles = eig(a);

% Extract the real and imaginary coordinates
X1 = real(poles); 
Y1 = imag(poles);

 Reduce Fast Dynamics

9-45



% Update the complex plane plot figure
figure(h5_ssc_hydraulic_actuator_digital_control)
hold on
plot(X1,Y1,'DisplayName','No Transport Delay','Marker','d',...
    'MarkerSize',5,'LineStyle','none');

The Transport Delay block is responsible for the missing oscillatory pole pair at
-2000 ± 1.1547i rad/sec

5 Plot the simulation results to see if they adequately match the original results.

Script for Simulating the Model and Plotting the Results
%% Plot the simulation results
% Get simulation results
simlog2 = simlog_ssc_hydraulic_actuator_digital_control;
pCylA = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve = simlog2.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Update figure
figure(h3_ssc_hydraulic_actuator_digital_control)
hold on
ah(1) = subplot(2,1,1);
hold on
plot(pCylA.time,pCylA.values,'LineWidth',3,'Color','r','LineStyle','-');
hold on
plot(pCylB.time,pCylB.values,'LineWidth',1,'Color','r','LineStyle','-');

9 Real-Time Simulation

9-46



legend({'Side A','Side B'},'Location','Best');
hold off
ah(2)= subplot(2,1,2);
hold on
plot(aValve.time,aValve.values,'LineWidth',1,'Color','r','LineStyle','-');
hold off
legend({'Original','No Transport Delay'},'Location','southeast');

The results appear similar.
6 Zoom to evaluate accuracy in more detail.

Script for Zooming In

%% Zoom the figure
% Define the x-axis limits
xStart = 0;

 Reduce Fast Dynamics

9-47



xEnd = 10;
xZoomStart1 = 1.78;
xZoomEnd1 = 1.88;

% Zoom in
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xZoomStart1, xZoomEnd1]);

At this level, you can see a small difference in the results for the modified model.
However, the simulation is accurate enough that the results meet expectations based
on empirical and theoretical data.

9 Real-Time Simulation

9-48



7 The model includes hydraulic compressibility, that is, oil column resonance. To
confirm that the column resonance is responsible for the second oscillatory pole pair,
turn off compressibility and repeat the frequency response and pole analyses.

Script for Eliminating Compressibility and Performing the Frequency Response and Pole
Analysis
%% Remove Compressibility
model = 'ssc_hydraulic_actuator_digital_control';
subsystem = 'Hydraulic Actuator';
composite_block = 'Hydraulic Cylinder';

CylA = [model,'/',subsystem,'/',composite_block,'/Chamber A'];
CylB = [model,'/',subsystem,'/',composite_block,'/Chamber B'];
set_param(CylA, 'Compressibility', '0')
set_param(CylB, 'Compressibility', '0')

%% Trim
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            
X = x(idx,:); U = y(idx);

%% Linearize
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop

%% Update Bode plot
% Generate data
npts = 100; 
w = logspace(-3,5,npts); 
G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

figure(h4_ssc_hydraulic_actuator_digital_control);
hold on
ah(1) = subplot(2,1,1);
hold on
magline_h=semilogx(w,20*log10(abs(G)));
xlim(ah(1),[w(1),w(end)]);
% figure(h4_ssc_hydraulic_actuator_digital_control);
% hold on

ah(2) = subplot(2,1,2);
hold on
phsline_h=semilogx(w,180/pi*unwrap(angle(G)));
set([magline_h,phsline_h],'LineWidth',1);
linkaxes(ah,'x');
legend('Original','No Transport Delay','No Compressibility',...
    'Location','southwest');

 Reduce Fast Dynamics

9-49



%% Update complex plane plot
poles = eig(a);

figure(h5_ssc_hydraulic_actuator_digital_control)
hold on
X1 = real(poles); 
Y1 = imag(poles);
plot(X1,Y1,'DisplayName','No Compressibility','Marker','d',...
    'MarkerSize',8,'LineStyle','none');

9 Real-Time Simulation

9-50



The further decrease in the phase drop reflects the reduction in high-frequency
dynamics. There are now two fast poles. Even though one of the fast poles has moved
further away from the imaginary axis, there are fewer fast dynamics because the
oscillating pole pair at 458.8 ± 1.4273i rad/sec is eliminated.

8 Print the values of the remaining two fast poles to the command window.

Script for Printing Pole Values

%% Print the pole values
eigs(a,2)

two_fast_poles =

   1.0e+03 *

   -2.6767
   -1.0000

The fast pole at -2677 rad/s corresponds to the load mass and hydraulic damping
introduced by the two orifice components in the hydraulic subsystem. These
dynamics are central to the simulation results. The fast pole at -1000 rad/s
corresponds to the controller denominator, 0.001s+1. The transfer function is

 Reduce Fast Dynamics

9-51



integral to the controller design. No more dynamic modes can be removed without
changing important system-level behavior.

9 Plot the simulation results to see if they adequately match the original results.

Script for Plotting the Simulation Results

%% Print simulation results
% Get simulation results
simlog3 = simlog_ssc_hydraulic_actuator_digital_control;
pCylA = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve = simlog3.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Update results
figure(h3_ssc_hydraulic_actuator_digital_control)
hold on
ah(1)= subplot(2,1,1);
hold on
plot(pCylA.time,pCylA.values,'LineWidth',1,'Color','y','LineStyle','--');
hold on
plot(pCylB.time,pCylB.values,'LineWidth',1,'Color','y','LineStyle','--');
legend({'Side A','Side B'},'Location','Best');
hold off
ah(2)= subplot(2,1,2);
hold on
plot(aValve.time,aValve.values,'LineWidth',1,'LineStyle','--');
legend({'Original','No Transport Delay','Compressibility'},'Location','southeast');
hold off

% Zoom out
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xStart, xEnd]);

9 Real-Time Simulation

9-52



The accuracy of the updated model seems acceptable.
10 Zoom to evaluate accuracy in more detail.

Script for Zooming In

%% Zoom the figure
% Zoom in
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xZoomStart1, xZoomEnd1]);

 Reduce Fast Dynamics

9-53



At this level, you can see that there is only a small additional difference in the
results for the modified model. The accuracy of the simulation is acceptable.

See Also
Blocks
Transport Delay

Functions
eig | eigs | linmod

9 Real-Time Simulation

9-54



Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Numerical Stiffness” on page 9-56
• “Reduce Zero Crossings” on page 9-66

More About
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Linearizing Models” (Simulink)

 See Also

9-55



Reduce Numerical Stiffness
In this section...
“Why Reduce Stiffness?” on page 9-56
“Review Reference Results” on page 9-57
“Identify and Modify a Stiff Element” on page 9-59
“Analyze Results” on page 9-61

This example helps you to complete the steps outlined in “Real-Time Model Preparation
Workflow” on page 9-6 and to meet the goals described in “Model Preparation Objectives”
on page 9-3.

In “Determine Step Size” on page 9-17, you use the results of a variable-step simulation
of your Simscape model to identify when step size decreases to capture behavior
accurately at discontinuities and for rapid dynamics in numerically stiff systems. These
types of events often require solvers to take steps that are too small to support real-time
simulation. This example shows how to use the results from “Determine Step Size” on
page 9-17 to identify a numerically stiff element in your model. It also shows how to
modify the element for faster simulation without sacrificing accuracy.

Why Reduce Stiffness?

Numerical stiffness can prevent your model from being real-time capable. A real-time-
capable model is one that produces acceptable results without incurring overruns when
you simulate it on your target processor. Stiff systems contain dynamics that vary both
quickly and slowly. When solvers take large steps, they usually capture slowly changing
dynamics, but they tend to miss rapid changes unless they are taking small steps. Small
step sizes cause overruns when they do not provide enough time for a real-time computer
to complete calculating solutions during a single step.

To you reduce numerical stiffness, you eliminate rapid changes. If there are no rapid
changes, the solver can take larger steps and still obtain accurate simulation results. The
larger the step size, the less likely it is that your model generates an overrun during real-
time simulation.

9 Real-Time Simulation

9-56



Review Reference Results
1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_reference';
open_system(model)

2 Simulate the model:

sim(model)
3 Create a figure that contains a semilogarithmic plot of the solver step size, a plot of

the motor speed results, and a plot of the gas flow results.

h1 = figure;
subplot(3,1,1)
semilogy(tout(1:end-1),diff(tout),'-x')
title('Solver Step Size and Results')
ylabel('Step Size (s)')
subplot(3,1,2)
plot(tout,Pneu_rts_RPM_DATA.signals.values)
ylabel('Speed (rpms)')
subplot(3,1,3)
plot(tout,Pneu_rts_Vol_Flow_DATA.signals.values)
xlabel('Time (s)')
ylabel('Flow Rate (m^3/min)')

 Reduce Numerical Stiffness

9-57



The simulation takes steps smaller than 1e-10 seconds when:

• The motor speed is near zero rpm (simulation time t = ~ 1, 5, and 9 seconds)
• The step change in motor speed is initiated from a steady-state speed to a new

speed (time t = ~ 4 and 8 seconds)
• The step change in flow rate is initiated from a steady-state speed to a new flow

rate (time t = ~ 4 and 8 seconds)
• The volumetric flow rate is near zero m^3/min (t = ~ 1, 4, and 5 seconds)

The results indicate that small step sizes are required to achieve accuracy when the
simulation is capturing dynamics that involve friction or small, compressible

9 Real-Time Simulation

9-58



volumes. Elements that generate zero crossings might also be responsible for the
small steps and slow recovery times.

4 Assign the simulation results to new variables in the MATLAB workspace so that
you can compare the data to results from a model that you modify.

timeRef  = tout;
simlogRef = simlog;

Identify and Modify a Stiff Element

Examine the friction load in the model to determine if it incorporates discontinuities or
has a small time constant that causes numerical stiffness. Modify the element if it causes
any rapidly changing dynamics that require a small step size.

1 Save the model as rts_stiffness_model in a writable folder on the MATLAB
path.

2 Open the Friction Load block dialog box, a Rotational Friction block. The figure
shows the friction torque/relative velocity characteristic for the simple
approximation of continuous friction that the block models.

 Reduce Numerical Stiffness

9-59



The breakaway torque is modeled as a function of the velocity threshold. When
velocity is close to zero, a small change in velocity yields a large change in torque.
When velocity is not close to zero, the torque change is more gradual. This block
represents a stiff element. To make the element less stiff, specify a higher value for
the Breakaway friction velocity.

3 On the Parameters tab of the dialog box, change the Breakaway friction
velocity from 0.059137 to 0.1 rad/s.

4 Simulate the modified model.

9 Real-Time Simulation

9-60



Analyze Results

To see how modifying the velocity threshold for the friction block affects the stiffness of
the component, compare the step sizes for the two simulations. The reference results
meet expectations based on empirical and theoretical data. You can assess the accuracy
of the modified model by comparing the speed results from the modified model to the
results from the original version of the model.

1 Plot the step size for the reference results for modified model to the figure that
contains the reference data.

h2 = figure;
semilogy(timeRef(1:end-1),diff(timeRef),'-x',...
    'LineWidth',1,'MarkerSize',7)
hold on
semilogy(tout(1:end-1),diff(tout),'--x','Color','r',...
    'LineWidth',.1,'MarkerSize',5)
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')
h1Leg = legend({'Reference','Modified'},'Location','best');

 Reduce Numerical Stiffness

9-61



The step size recovers more quickly from event that occurs at simulation time t = 4
and 9 seconds. The simulation is less stiff at these times.

2 Extract the speed and time data from the logging nodes for the original and modified
models.
speedRefNode = simlogRef.Measurements.Ideal_Rotational_Motion_Sensor.R.w;
speedRef = speedRefNode.series.values('rpm');
timeRef = speedRefNode.series.time;
speedModNode = simlog.Measurements.Ideal_Rotational_Motion_Sensor.R.w;
speedMod = speedModNode.series.values('rpm');
timeMod = speedModNode.series.time;

3 Plot and compare the results for the speed data for both simulations to make sure
that the modified model is accurate.

9 Real-Time Simulation

9-62



h3 = figure;
plot(timeRef,speedRef)
h3;
hold on
plot(timeMod,speedMod,'r--')
title('Speed')    
xlabel('Time (s)')
ylabel('Speed (rpms)')
h3Leg = legend({'Reference','Modified'},'Location','best');

4 Zoom for a closer look at the inflection point at time (t) = ~5 seconds.

h3;
xStart = 0;
xEnd = 10;

 Reduce Numerical Stiffness

9-63



yStart = -4000;
yEnd = 4000;
xZoomStart1 = 4.8;
xZoomEnd1 = 5.2;
yZoomStart1 = -400;
yZoomEnd1 = 150;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

At this zoom level, you can see that the simulation results for the modified model are
accurate enough to meet expectations based on empirical and theoretical data.

The Friction Load is now less numerically stiff. The figure of step size during simulation
shows that other elements in the model are also responsible for slow recovery times.

9 Real-Time Simulation

9-64



Reduce more slow-recovery steps by examining and modifying the other elements that
cause stiffness.

You can also increase speed by modifying the model using methods in “Reduce
Computation Costs” on page 9-27 and “Reduce Zero Crossings” on page 9-66. If you can
eliminate all small steps that might generate an overrun, you can attempt to run a fixed-
step simulation using the methods in “Choose Step Size and Number of Iterations” on
page 9-114.

See Also
Rotational Friction

See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Zero Crossings” on page 9-66
• “Determine System Stiffness” on page 9-104

More About
• “About Simulation Data Logging” on page 11-2
• “Events and Zero Crossings” on page 5-3
• “Log and Plot Simulation Data” on page 11-9
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Stiffness” on page 5-3

 See Also

9-65



Reduce Zero Crossings
In this section...
“Why Reduce Zero Crossings?” on page 9-66
“Obtain Reference Results and Plot Simulation Step Size” on page 9-66
“Identify and Modify Elements That Cause Zero Crossings” on page 9-71
“Analyze the Results of the Modified Model” on page 9-75

Why Reduce Zero Crossings?

Real-time deployment requires using a fixed-step solver. You typically use a variable-
step solver for desktop simulation. Variable-step solvers take smaller steps when they
detect a zero-crossing event. Smaller steps help to capture the dynamics that cause the
zero crossing accurately. Fixed-step solvers do not vary the size of the steps that they
take. If your model relies heavily on detecting zero crossings, you might need to specify a
very small fixed-step size to capture the dynamics accurately. A small step size can lead
to overruns during real-time simulation. By reducing the number of zero crossings, you
can configure your solver to use a larger step size for both variable-step and fixed-step
deployment while generating results that are accurate enough.

Obtain Reference Results and Plot Simulation Step Size

Simulate your model to generate data that you can use to:

• Decide which model elements to change to reduce the number of zero-crossing events.
• Assess the accuracy of your modified model.

1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_stiffness_redux'; 
open_system(model)

9 Real-Time Simulation

9-66



2 Simulate the model:

sim(model)
3 Save the data to the workspace.

simlogRef = simlog;
timeRef = tout;

4 Plot the step size against the simulation time.

h1 = figure;
semilogy(timeRef(1:end-1),diff(timeRef),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')

 Reduce Zero Crossings

9-67



The simulation slows down repeatedly at the beginning of the simulation and at time
t = ~1, 4, 5, 8, and 9 seconds.

5 Zoom to examine the data between time t = 0.8 and 1.03 seconds.
h1;
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 10e0;
xZoomStart1 = 0.8;
xZoomEnd1 = 1.03;
yZoomStart1 = 10e-20;
yZoomEnd1 = 10e-1;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

9 Real-Time Simulation

9-68



The blue x markers in the figure indicate that the simulation has completed
executing a step. The circled markers indicate a very small step size and represent
zero-crossing events. The step size decreases to approximately 10e-15 seconds for
each zero-crossing detection.

6 To obtain the reference results for motor speed, open the Measurements subsystem.

Select the Ideal Rotational Motion Sensor block, . With the block selected, use
the simscape.logging.sli.findNode function to find and save the node that
contains the data for W, the signal for the angular velocity of the motor.

nRef = simscape.logging.sli.findNode(simlogRef,gcbh)

 Reduce Zero Crossings

9-69



nRef = 

  Node with properties:

             id: 'Ideal_Rotational_Motion_Sensor'
    loggingMode: 'memory'
              R: [1×1 simscape.logging.Node]
              w: [1×1 simscape.logging.Node]
              A: [1×1 simscape.logging.Node]
              C: [1×1 simscape.logging.Node]
            phi: [1×1 simscape.logging.Node]
              W: [1×1 simscape.logging.Node]
              t: [1×1 simscape.logging.Node]

7 Use the simscape.logging.plot function to plot the reference results for W.

simscape.logging.plot(nRef.W);

9 Real-Time Simulation

9-70



Identify and Modify Elements That Cause Zero Crossings

Analyze the simulation data to determine the elements responsible for the zero crossings.
Modify the model to reduce the number of zero crossings that those elements cause.

1 Use the Simscape sscprintzcs function to print zero-crossing information for
logged simulation data.

sscprintzcs(simlogRef)

ssc_pneumatic_rts_stiffness_redux (50 signals, 46 crossings)
  +-Directional_5_way_valve (42 signals, 30 crossings)
  | +-Area_B_S (2 signals, 0 crossings)

 Reduce Zero Crossings

9-71



  | +-Area_P_A (2 signals, 0 crossings)
  | +-Area_P_B (2 signals, 0 crossings)
  | +-Variable_Area_Orifice_1 (9 signals, 5 crossings)
  | +-Variable_Area_Orifice_2 (9 signals, 10 crossings)
  | +-Variable_Area_Orifice_3 (9 signals, 6 crossings)
  | +-Variable_Area_Orifice_4 (9 signals, 9 crossings)
  +-Pipe_1 (2 signals, 0 crossings)
  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pipe_2 (2 signals, 0 crossings)
  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pneumatic_Motor (4 signals, 16 crossings)

The results show that most of the 46 detected zero crossings occur in the Directional
5-way valve block (30 crossings) and the Pneumatic Motor block (16 crossings).

2 Use the sscexplore function to open the Simscape Results Explorer to interact
with logged simulation data.

sscexplore(simlogRef)
3 In the results tree, click Pneumatic Motor to see the results for the motor.

9 Real-Time Simulation

9-72



Most of the zero crossings occur between t = 0 and t =1 seconds, when the other
signals in the block are near zero. The few remaining zero crossings occur at
approximately t = 5 and 9 seconds.

4 To identify the source code that triggers some of the zero crossings, select
Directional 5-way valve > Variable Area Orifice 2 > SimulationStatistics
(ZeroCrossings) >  zc_1 - 8 crossings. Click the
PneumaticMotor.Elements.VariableOrifice link that appears in the lower, left
corner of the window.

 Reduce Zero Crossings

9-73



The source code for the Pneumatic Motor block opens with the cursor at this code:

% Area - limit to be greater than Area0
AreaL = if Area<Area0, Area0 else Area end;

The conditional statement that is responsible for the zero crossings is related to the
orifice area.

5 Decrease the number of zero crossings, by decreasing the maximum orifice area of
the Directional 5-way valve. Open the Directional 5-way valve block dialog box and
specify 995 for the Maximum orifice area (mm^2) parameter.

9 Real-Time Simulation

9-74



Analyze the Results of the Modified Model

Compare the results to the reference results to ensure the accuracy of your modified
model. Confirm that your modified model has fewer zero crossings.

1 Simulate the model and print the zero crossing data.

sim(model)
sscprintzcs(simlog)

ssc_pneumatic_rts_stiffness_redux (50 signals, 38 crossings)
  +-Directional_5_way_valve (42 signals, 22 crossings)
  | +-Area_B_S (2 signals, 0 crossings)
  | +-Area_P_A (2 signals, 0 crossings)
  | +-Area_P_B (2 signals, 0 crossings)
  | +-Variable_Area_Orifice_1 (9 signals, 5 crossings)
  | +-Variable_Area_Orifice_2 (9 signals, 6 crossings)
  | +-Variable_Area_Orifice_3 (9 signals, 6 crossings)
  | +-Variable_Area_Orifice_4 (9 signals, 5 crossings)
  +-Pipe_1 (2 signals, 0 crossings)
  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pipe_2 (2 signals, 0 crossings)
  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pneumatic_Motor (4 signals, 16 crossings)

The overall number of zero crossings has decreased from 46 to 38.
2 Compare the results using the simscape.logging.plot function to plot the

reference results and the results from the modified model to a single plot:

simscape.logging.plot...
    ({simlogRef.Measurements.Ideal_Rotational_Motion_Sensor.W...
    simlog.Measurements.Ideal_Rotational_Motion_Sensor.W}, ...
    'names', {'Reference','Modified'})

 Reduce Zero Crossings

9-75



The results look the same.
3 Zoom control for a closer look at the inflection point at t = ~ 5 seconds.

xStart = 0;
xEnd = 10;
yStart = -400;
yEnd = 400;
xZoomStart1 = 4.75;
xZoomEnd1 = 5.15;
yZoomStart1 = -20;
yZoomEnd1 = 30;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

9 Real-Time Simulation

9-76



At this zoom level, you can see a small difference in the results for the modified
model. However the simulation is accurate enough that the results meet
expectations based on empirical and theoretical data.

To improve simulation speed further before performing the real-time simulation
workflow with this model, try:

• Repeating the method shown in this example to identify and adjust other
elements that cause zero crossings that are responsible for the small steps

• Reducing any numerical stiffness that is responsible for the small steps

 Reduce Zero Crossings

9-77



See Also
simscape.logging.plotxy | simscape.logging.sli.findNode | sscexplore |
sscprintzcs

See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27
• “Reduce Fast Dynamics” on page 9-33
• “Reduce Numerical Stiffness” on page 9-56
• “Log, Navigate, and Plot Simulation Data” on page 11-24

More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29
• “Events and Zero Crossings” on page 5-3
• “Model Preparation Objectives” on page 9-3
• “Improving Speed and Accuracy” on page 9-12
• “Real-Time Model Preparation Workflow” on page 9-6
• “Using Conditional Expressions in Equations”
• “Zero-Crossing Detection” (Simulink)

9 Real-Time Simulation

9-78



Partition a Model
You can make your model real-time capable by dividing the computational cost for
simulation between multiple processors via model partitioning. Computational cost is a
measure of the number and complexity of tasks that a central processing unit (CPU)
performs per time step during a simulation. A high computational cost can slow
simulation execution speed and cause overruns when you simulate in real time on a
single CPU.

Typically, you can lower computational costs enough for real-time simulation on a single
processor by adjusting model fidelity and solver settings using methods described in
“Real-Time Model Preparation Workflow” on page 9-6. However, it is possible that there
is no combination of model complexity and solver settings that can make your model real-
time capable on a single CPU on your target machine. If your real-time simulation using
a single CPU does not run to completion, or if the results from the simulation are not
acceptable, partition your model. You can run a partitioned model using a single, multi-
core target machine or multiple, single-core target machines.

This example shows you how to partition your model into two discrete subsystems, one
that contains the plant, and one that contains the controller, for parallel processing on
individual real-time CPUs.

1 Open the model. At the MATLAB command prompt, enter

model = 'ssc_hydraulic_actuator_digital_control';
open_system(model)

In addition to signal routing and monitoring blocks, the model contains these blocks:

 Partition a Model

9-79



• Command Signal — A Signal Builder block that generates the input reference
signal, r.

• Sum — A block that compares the reference signal, r, from the Command Signal
block to the output signal, y, from the Hydraulic Actuator to generate the error, x,
that is r - y = x.

• Controller — A continuous Transfer Fcn block. The Numerator coefficients
and Denominator coefficients parameters for this block are specified by the
variables num and den.

• Transport Delay — A block that simulates time delay for a continuous input
signal. The block is not labeled in this model. To show hidden automatic names,
on the Simulink editor menu bar, click Display and clear Hide Automatic
Names.

• Linearization I/O — A subsystem that linearizes the model about an operating
point.

• Hydraulic Actuator — A subsystem that contains the Simscape plant model.
2 Examine the variables in the workspace by clicking each variable in turn.

• The variable for sample time, ts = 0.001.
• The Numerator coefficients parameter, num = -0.5.
• The Denominator coefficients parameter, den = [0.001 1].
• The variable ClosedLoop = 1.

3 Simulate the model and open the Load Position scope to examine the results.

sim(model)
open_system([model, '/Load Position'])

9 Real-Time Simulation

9-80



The output from the hydraulic actuator matches the command signal.
4 Eliminate items that add to the computational cost but which do not affect the

results of real-time simulation. In the example model, because the closed loop gain is
1, such items include the Linearization I/O points, In1, and In2 blocks. Delete the
three blocks and the lines that interconnect them.

5 Configure the model for visualization.

a Delete the Mux block.
b Delete the Goto and From blocks that are named Cmd.
c Connect the Load Position Scope block to the output signal from the Hydraulic

Actuator.
d Add a second Scope block.
e Connect the new Scope block to the unconnected connection line from the

Command Signal.
f Change the name of the new Scope block to Reference.

6 Replace the Transport Delay block with a Unit Delay block.

a Delete the Transport Delay block and the open ended connection line that is
connected to the outport of the block.

 Partition a Model

9-81



b Add the Unit Delay block from the Simulink/Discrete library and connect it to
the input port of the Hydraulic Actuator Subsystem.

c For the Sample time (-1 for inherited) parameter of the Unit Delay block,
specify ts.

7 Replace the Controller block with a Discrete Transfer Fcn block from the Simulink
Discrete library.

a Delete the Controller block.
b Click in the model window and enter discrete transfer fcn. When the

dropdown menu that contains the block appears, click Discrete Transfer
Fcn.

c Connect the new block to the open-ended connection line from the Sum block.
d Connect the outport of the new block to the inport of the Unit Delay block.
e Specify parameters for the discrete controller using a Tustin transformation of

the original, continuous transfer function.

i At the MATLAB command line, save new variables based on the original
coefficients:

k = num;
alpha = den(1,1);

ii For the Discrete Transfer Fcn block Numerator parameter, specify [k*ts
k*ts].

iii For the Denominator parameter, specify [2*alpha+ts ts-2*alpha].
iv For the Sample time (-1 for inherited) parameter, specify ts.

8 Provide digital sampling for continuous time measurements using Zero-Order Hold
blocks.

a Add Zero-Order Hold blocks to both signals that are input to the Sum block.
b For the Sample time (-1 for inherited) parameter of both Zero-Order Hold

blocks, specify ts.
9 Connect the blocks as shown in the figure.

9 Real-Time Simulation

9-82



10 Simulate the model and open the Load Position scope to see how the modifications
affect the results.
sim(model)
open_system([model, '/Load Position'])

The output from the hydraulic actuator matches the original results.

 Partition a Model

9-83



11 Configure the solvers.

a To configure the global solver, open the model configuration parameters, and in
the Solver pane:

• Set the solver Type to Fixed-step.
• Set the Solver to discrete (no continuous states).
• Specify ts for the Fixed-step size (fundamental sample time) parameter.
• Click OK.

b To configure the local solver, open the Hydraulic Actuator subsystem and update
these parameters for the Solver Configuration block:

• Select the option to Use local solver.
• Specify ts for the Sample time.
• Select the option to Use fixed-cost runtime consistency iterations.
• Click OK.

12 Partition the model into two subsystems:

a Create a subsystem that contains these blocks:

• Command Signal
• Reference
• Zero-Order Hold
• Sum
• Discrete Transfer Fcn
• Unit Delay

b Label the subsystem Controller Subsystem.
c Open the Controller Subsystem.
d Rename the Out1 Outport block as u.
e Rename the In1 Inport block as y.
f Navigate to the top model.
g Create a second subsystem that contains these blocks:

• Hydraulic Actuator

9 Real-Time Simulation

9-84



• Zero-Order Hold1
• Load Position

h Label the subsystem Plant Subsystem.
i Open the Plant Subsystem.
j Rename the Out1 Outport block as u_plant.
k Rename the In1 Inport block as y_plant.
l To see the partitioned subsystems, navigate to the top model.

 Partition a Model

9-85



This model is partitioned for concurrent execution. To learn how to add tasks, and
map individual tasks to partitions, see “Partition Your Model Using Explicit
Partitioning” (Simulink).

See Also
Discrete Transfer Fcn | Unit Delay | Zero-Order Hold

9 Real-Time Simulation

9-86



Related Examples
• “Determine Step Size” on page 9-17
• “Estimate Computation Costs” on page 9-111
• “Reduce Computation Costs” on page 9-27

More About
• “Real-Time Model Preparation Workflow” on page 9-6
• “Model Preparation Objectives” on page 9-3
• “Implicit and Explicit Partitioning of Models” (Simulink)
• “Multicore Programming with Simulink” (Simulink)

External Websites
• Concurrent Execution with Simulink Real-Time and Multicore Target Hardware

 See Also

9-87

http://www.mathworks.com/company/newsletters/articles/concurrent-execution-with-simulink-real-time-and-multicore-target-hardware.html


Manage Model Variants
Variant blocks allow you to create a single model that caters to multiple variant
requirements. Such models have a fixed common structure and a finite set of variable
components. The variable components are activated depending on the variant choice that
you select. Thus, the resultant active model is a combination of the fixed structure and
the variable components based on the variant choice. The use of variant blocks in a
model helps in reusability of the model for different conditional expressions called
variant choices. For more information and examples, see “Variant Subsystems”
(Simulink).

However, you cannot simulate on real-time target hardware using code that does not
specify default variant choices. Before you generate code for real-time simulation, use the
Variant Manager to identify variant blocks in your model and to manage the variation
points that are modeled using those blocks. To learn how to use the variant manager, see
“Variant Manager Overview” (Simulink).

Limitations

Simscape does not support conditional compilation for model variants.

See Also
Model Variants

More About
• “Prepare Variant-Containing Model for Code Generation” (Simulink)
• “Set up Model Variants Using a Model Block” (Simulink)
• “Variant Manager Overview” (Simulink)
• “Variant Subsystems” (Simulink)
• “What Are Variants and When to Use Them” (Simulink)
• “Working with Variant Choices” (Simulink)

9 Real-Time Simulation

9-88



Fixed-Cost Simulation for Real-Time Viability
The step size and number of iterations that you specify affect the computational cost of
your real-time simulation. As you decrease the step size or increase the number of
iterations, the results become more accurate, but the simulation costs more so it can take
longer to simulate. Simulation overrun occurs if the step size is too small or if there are
too many iterations for the solver to calculate a solution in a single real-time
computational frame.

Limit the computational cost by specifying the solver step size and, for implicit solvers,
the number of iterations for the Simulink global solver and for each Simscape local solver
in your model.

For best results when specifying the step size of a fixed-step solver for real-time
simulation:

• Specify a sample time that results in time steps that are no greater than the
maximum step size.

• Specify the sample time for each local solver independently and as an integer multiple
of the sample time that you specify for the global solver.

• Choose a step size that is larger than the minimum step size for required speed and
smaller than the maximum step size for required accuracy.

To configure the number of iterations for real-time simulation with a fixed-step solver:

• For local solvers, specify the number of nonlinear iterations for each independently
configured Solver Configuration block.

• For global solver ode14x, specify the number of Newton’s iterations.

To obtain accurate results, for both local and global solvers start with two or three
iterations and increase as required.

See Also

Related Examples
• “Choose Step Size and Number of Iterations” on page 9-114

 Fixed-Cost Simulation for Real-Time Viability

9-89



More About
• “Simulating with Fixed Cost” on page 5-22
• “Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers” on page

5-21
• “Solvers for Real-Time Simulation” on page 9-97

9 Real-Time Simulation

9-90



Real-Time Simulation Workflow
In this section...
“Make Your Model Real-Time Viable” on page 9-94
“Insufficient Computational Capability for Real-Time Viability” on page 9-96

The figure shows the real-time simulation workflow. The connectors are exit points for
returning to the real-time model preparation workflow.

 Real-Time Simulation Workflow

9-91



The figure shows the real-time model preparation workflow. The connector is an entry
point for returning to the real-time model preparation workflow from other real-time
workflows (for example, the real-time simulation workflow or the hardware-in-the-loop
simulation workflow).

9 Real-Time Simulation

9-92



Before performing this workflow, prepare your model for real-time simulation using the
“Real-Time Model Preparation Workflow” on page 9-6. The real-time model preparation
workflow shows you how to obtain reference results, determine the maximum step size,
and modify your model to simulate quickly and produce accurate results.

Use the real-time simulation workflow to increase the likelihood that your model is real-
time capable. Your model is real-time capable if it meets both of these criteria when you
simulate it on your real-time computer:

 Real-Time Simulation Workflow

9-93



• The results match your expectations, based on empirical data or theoretical models.
• The model simulates without incurring an overrun.

The real-time simulation workflow uses bounded, that is fixed-step, fixed-cost,
simulation. Fixed-step, fixed-cost simulation sets an upper boundary on computational
cost by limiting both the step size and the number of iterations that the solver uses.

Make Your Model Real-Time Viable
Perform Fixed-Step, Fixed-Cost Simulation

Run your model on a desktop computer using fixed-step, fixed-cost configurations for the
global solver and local solvers. For more information on specifying fixed-step, fixed-cost
solver configurations for real-time simulation, see “Choose Step Size and Number of
Iterations” on page 9-114 and “Fixed-Cost Simulation for Real-Time Viability” on page 9-
89.

Evaluate Model Accuracy

Compare the results from the simulation on the target computer to your reference
results. Are the reference and modified model results the same? If not, are they similar
enough that the empirical or theoretical data also supports the results from the
simulation of the modified model? Is the modified model representing the phenomena
that you want it to measure? Is it representing those phenomena correctly? If you plan on
using your model to test your controller design, is the model accurate enough to produce
results that you can rely on for system qualification? The answers to these questions help
you to decide if your real-time results are accurate enough.

Improve Accuracy by Adjusting Solver Settings

If your fixed-step, fixed-cost simulation results do not match your reference results, try to
improve accuracy by adjusting solver configurations. Increasing the number of iterations
or decreasing the step size can improve accuracy.

For an implicit global solver (ode14x), increase the number of Newton’s iterations. For a
Backward Euler or Trapezoidal Rule local solver, increase the number of nonlinear
iterations.

For the global solver, and for any local solvers, decrease the step size. Configure the step
size for each local solver as an integer multiple of the step size you specify for the global
solver.

9 Real-Time Simulation

9-94



Return to the Real-Time Model Preparation Workflow

If changing solver configurations does not improve or speed enough, try to make your
model real-time capable by returning to the real-time model preparation workflow.

Adjust the fidelity or scope of your model, and then step through the other processes and
decisions in the real-time model preparation workflow. Iterate on adjusting, simulating,
and analyzing your model until it is fast and accurate enough for you to attempt the real-
time simulation workflow again. For information, see “Real-Time Model Preparation
Workflow” on page 9-6.

Evaluate Overrun Risk

In terms of speed, the only method for definitively determining that your model is real-
time capable is to test for overruns during simulation on your target hardware. You can,
however, use fixed-step, fixed-cost simulation to estimate the likelihood that your solver
executes quickly enough for real-time simulation. For information on estimating
simulation time, see “Estimate Computation Costs” on page 9-111.

Improve Simulation Speed by Adjusting Solver Settings

If your computational cost estimate indicates that your model executes too slowly to
avoid an overrun on a real-time target machine, try to increase simulation speed by
adjusting solver configurations. Decreasing the number of iterations or increasing the
step size can improve accuracy.

For an implicit global solver (ode14x), decrease the number of Newton’s iterations. For
either a Backward Euler or Trapezoidal Rule local solver, decrease the number of
nonlinear iterations.

For the global solver, and for any local solvers, increase the step size. Configure the step
size for each local solver as an integer multiple of the step size you specify for the global
solver.

Model Is Real-Time Viable

When fixed-step, fixed-cost simulation results indicate that your model is likely real-time
capable, you can attempt real-time simulation on the target hardware. For information
on how you can use real-time simulation to test your controller hardware, see “What Is
Hardware-In-The-Loop Simulation?” on page 9-131.

 Real-Time Simulation Workflow

9-95



Return to the Real-Time Simulation Workflow

The connector is an entry point for returning to the real-time simulation workflow from
another workflow (for example, the hardware-in-the-loop simulation workflow).

Insufficient Computational Capability for Real-Time Viability

It is possible that your real-time target machine lacks the computational capability for
running your model in real time. If, after multiple iterations of the workflow, there is no
combination of model complexity and solver settings that makes your model real-time
viable, consider these options for increasing processing power:

• “Upgrading Target Hardware” on page 9-15
• “Simulating Parts of the System in Parallel” on page 9-15

See Also

Related Examples
• “Choose Step Size and Number of Iterations” on page 9-114
• “Determine System Stiffness” on page 9-104
• “Estimate Computation Costs” on page 9-111

More About
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Improving Speed and Accuracy” on page 9-12
• “Real-Time Model Preparation Workflow” on page 9-6
• “Solvers for Real-Time Simulation” on page 9-97
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131

9 Real-Time Simulation

9-96



Solvers for Real-Time Simulation
In this section...
“Choosing Between Discrete and Continuous Solvers” on page 9-98
“Computational Cost for Continuous Solvers” on page 9-98
“How Numerical Stiffness Affects Solver Choice” on page 9-99
“Using Simscape Local Fixed-Step Solvers” on page 9-100

To run your model on a real-time target machine, configure your model for fixed-step,
fixed-cost simulation. The type of fixed-step solver, step size, and number of iterations
that you specify affect the speed and accuracy of your real-time simulation.

Each distinct Simscape physical network in your model has its own Simscape Solver
Configuration block. You can set the solver choice differently for each physical network.
If you do not check the local solver option for a physical network, then that network uses
the Simulink global solver that you specify.

When choosing a fixed-step solver type, the main factors to consider for each network in
your model are:

• Whether the network is discrete or continuous
• The computational cost of the solver

• The numerical stiffness of the network

The following table summarizes the types of fixed-step solvers in the Simulink and
Simscape libraries.

Realm Type Numerical Method Solver
Simulink
global solver

Continuous Explicit ode1 (Euler's method)
ode2 (Huen’s method)
ode3 (Bogacki-Shampine)
ode4 (Fourth-Order Runge-Kutta, RK4)
ode5 (Dormand-Prince,RK5)
ode8 (Dormand-Prince, RK8)

Implicit ode14x (extrapolation)

 Solvers for Real-Time Simulation

9-97



Realm Type Numerical Method Solver
Discrete Not applicable Discrete (no continuous states)

Simscape local
network

Continuous Implicit Backward Euler
Trapezoidal Rule

Choosing Between Discrete and Continuous Solvers

To perform real-time simulation on a discrete model, for example, for the design of a
digital controller, specify the Simulink global discrete solver. If the network that contains
the controller has any continuous states, discretize the network. For an example that
shows how to discretize the controller for the hydraulic actuator, see “Hydraulic Actuator
Configured for HIL Testing”.

Note A physical network using a local solver appears to the global Simulink solver as if it
has discrete states.

If your controller model does contain continuous states, for example, if you are modeling
an analog controller, use a Simulink global continuous solver.

Computational Cost for Continuous Solvers

Computation cost is the number of calculations per time step that a processor performs.
Real-time readiness varies inversely with computation cost. The lower the computational
cost of a model is, the more likely it is that a real-time simulation of the model proceeds
without overruns and generates sufficiently accurate results.

The figure shows the normalized computational cost of all global and local continuous
fixed-step solvers. The data comes from a series of fixed-step, fixed-cost simulations using
the different solver types. The model is nonlinear and contains one physical network.
Although the solver type varies, the simulations use the same step size and a similar
setting for the total number of solver iterations. They do so because the step size and
number of iterations also affect the computational cost of a simulation.

9 Real-Time Simulation

9-98



For a given accuracy, explicit global solvers generally have a lower computational cost
than implicit global solvers. Local (Simscape only) solvers are less costly than global
solvers.

How Numerical Stiffness Affects Solver Choice
To determine whether to use an explicit or implicit fixed-step solver for simulating your
model in real time, consider these two factors:

• The numerical stiffness of the system
• The computational cost of the solver

To determine if your system is stiff or nonstiff, simulate with different fixed-step solver
configurations and compare results from each to the reference results. If the step size is
too large, stiff systems can produce oscillations because they contain dynamics that vary
both quickly and slowly. For more information, see “Stiffness of System” (Simulink) and
“Determine System Stiffness” on page 9-104.

Explicit solvers are faster than implicit solvers, but they provide less accurate solutions
for numerically stiff systems because they tend to damp out oscillations. Implicit solvers

 Solvers for Real-Time Simulation

9-99



can better capture the oscillations that occur in stiff systems because they are more
robust than explicit solvers. However, implicit solvers deliver better accuracy at the
expense of speed.

If your controller model is continuous and numerically stiff, use the implicit solver
ode14x. If ode14x does not allow your model to simulate fast enough for real-time
simulation, at the expense of accuracy, you can:

• Improve simulation speed by increasing the step size or decreasing the number of
iterations.

• Reduce the stiffness of your model and specify an explicit solver instead of ode14x.

To determine the explicit solver that is the best choice for your less stiff or numerically
nonstiff, continuous controller model, perform bounded simulation using each of the
explicit continuous solvers. Configure each solver to use the same step size and a similar
number of solver iterations. Compare the simulation results and choose the solver that
provides the best combination of accuracy and speed.

To increase the accuracy of the results that your explicit solver provides, at the expense
of speed, decrease the step size or increase the number of iterations. For more
information on configuring your model for fixed-step, fixed-cost simulation, and
evaluating the results of bounded simulation, see “Choose Step Size and Number of
Iterations” on page 9-114.

Using Simscape Local Fixed-Step Solvers

You can usually further minimize computational cost by using a Simscape local solver for
each independent physical network in your model. For similar levels of accuracy, local
solvers have a lower computational cost than Simulink global solvers.

Simscape allows you to specify a different solver configuration for each independent
physical system (subsystem) in your model. You can use an implicit fixed-step solver on
the stiff local networks and an explicit fixed-step solver on the nonstiff local networks.
Optimizing solvers for each network minimizes the overall number of computations done
per time step and makes it more likely that the model can run in real time without
generating an overrun.

Choose between two Simscape fixed-step solvers for real-time simulation. Both are
implicit.

9 Real-Time Simulation

9-100



• Backward Euler
• Trapezoidal Rule

The Backward Euler solver is more robust, and therefore more stable than the
Trapezoidal Rule solver. It tends to damp oscillations. The Trapezoidal Rule solver is
more accurate, but less stable than the Backward Euler solver. It tends to capture
oscillations, like the sinusoid AC waveforms that are common to electrical systems.
Regardless of the local solver you choose, the simulation uses the Backward Euler
whenever numerical stability is at risk:

• At the start of simulation.
• After an instantaneous change, when the corresponding block undergoes an internal

discrete change.

See Also
Solver Configuration

Related Examples
• “Determine System Stiffness” on page 9-104
• “Reduce Numerical Stiffness” on page 9-56
• “Choose Step Size and Number of Iterations” on page 9-114

More About
• “Choose a Fixed-Step Solver” (Simulink)
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Making Optimal Solver Choices for Physical Simulation” on page 5-21
• “Solver Classification Criteria” (Simulink)
• “Solvers” (Simulink)

 See Also

9-101



Troubleshooting Real-Time Simulation Issues

In this section...
“Avoid Computer Overloads and Unacceptable Simulation Results” on page 9-102
“Optimize Real-Time Application Execution Using Simscape Checks” on page 9-102

Avoid Computer Overloads and Unacceptable Simulation Results

A model is not real-time capable if, during simulation on real-time target hardware, it
overloads the CPU or produces results that do not match your theoretical calculations or
experimental data. To make your model real-time capable, use the workflows in “Real-
Time Model Preparation Workflow” on page 9-6 and “Real-Time Simulation Workflow” on
page 9-91. For examples that show how to:

• Find step-size limits and configure solvers for real-time simulation, see “Determine
Step Size” on page 9-17 and “Choose Step Size and Number of Iterations” on page 9-
114.

• Analyze and modify the fidelity of your model for real-time simulation, see “Estimate
Computation Costs” on page 9-111, “Reduce Computation Costs” on page 9-27,
“Determine System Stiffness” on page 9-104, “Reduce Numerical Stiffness” on page 9-
56, and “Reduce Zero Crossings” on page 9-66.

If you cannot find a combination of solver settings and model fidelity that makes your
model real-time capable, consider one of these options:

• Execute your real-time application on a faster target machine.
• Configure the networks in your model so that they are independent of each other, and

then partition them for parallel simulation on individual target computers. For
information, see “Multicore Programming with Simulink” (Simulink)

Optimize Real-Time Application Execution Using Simscape Checks

If you have a Simulink Real-Time™ license, you can optimize your model for real-time
execution using the Execute real-time application activity mode in Performance
Advisor. This mode includes several checks specific to physical models. Use Simulink
Performance Advisor to identify:

9 Real-Time Simulation

9-102



• Simscape Solver Configuration blocks with settings that are suboptimal for real-time
simulation. For optimal results, Solver Configuration blocks should have the following
options selected: Use local solver and Use fixed-cost runtime consistency
iterations.

• Simscape blocks that have a Fluid dynamic compressibility option that is
suboptimal for real-time simulation. For optimal results, the Fluid dynamic
compressibility option should be set to Off.

To access the checks, in the Performance Advisor window, under Activity, select
Execute real-time application. In the left pane, expand the Real-Time folder,
and then the Simscape checks folder. Run the Simscape checks.

For more information, see “Use Performance Advisor to Improve Simulation Efficiency”
(Simulink).

See Also

More About
• “Model Preparation Objectives” on page 9-3
• “Real-Time Model Preparation Workflow” on page 9-6
• “Real-Time Simulation Workflow” on page 9-91

 See Also

9-103



Determine System Stiffness

In this section...
“Obtain Reference Results” on page 9-104
“Simulate with an Implicit Fixed-Step Solver” on page 9-105
“Simulate with an Explicit Fixed-Step Solver” on page 9-107
“Analyze the Results” on page 9-109

Determining the numerical stiffness of your model helps you to decide between using an
implicit or an explicit fixed-step solver for real-time simulation. To determine numerical
stiffness, first use the real-time model preparation workflow to optimize the speed and
accuracy of your model. Then, simulate your model using both explicit and implicit fixed-
step solvers. Compare the simulation results to see how the solvers behave. If your model
is numerically stiff, an explicit solver typically exhibits small oscillations around the
desired solution.

Implicit solvers are more robust than explicit solvers, however, explicit solvers are faster.
For robust results when performing real-time simulation with numerically stiff model,
use an implicit fixed-step solver. If your model is not stiff, use an explicit solver to
maximize simulation speed.

In this example, you obtain reference results by simulating a pneumatic model with a
variable-step solver. You also configure and simulate the model using an implicit and
then an explicit fixed-step global Simulink solver. Then you compare the results from all
three simulations to determine if the pneumatic model is numerically stiff.

Obtain Reference Results
1 To open the model, at the MATLAB command prompt, enter:

ssc_pneumatic_rts_reference
2 Save the model as stiffness_model to a writable folder on the MATLAB path.
3 Simulate the model.
4 Assign the simulation results to new variables.

yRef = yout;
tRef = tout;

9 Real-Time Simulation

9-104



5 Plot the results of the variable-step simulation.

h1 = figure;
plot(tRef,yRef)
h1Leg = legend({'Reference'});
title('Speed')
xlabel('Time (s)')
ylabel('Speed (rpm)')

Simulate with an Implicit Fixed-Step Solver
1 Configure the model for fixed-step simulation with implicit solver ode14x. In the

configuration parameters Solver pane, set:

 Determine System Stiffness

9-105



• Type to Fixed-step
• Solver to ode14x (extrapolation)
• Under Additional options, Fixed-step size (fundamental sample time) to

1e-3
• Number of Newton's iterations to 1.

Click Apply.
2 Simulate the model.
3 Assign the simulation results to new variables.

yOde14x = yout;
tOde14x = tout;

4 Use the stairs function to plot the results of the implicit fixed-step simulation so
you can see how the solver behaves when it executes each step in the simulation.

h1
hold on
stairs(tOde14x,yOde14x,'g--')
h1Leg = legend({'Reference','Implicit Solver'});

The results appear the same.

9 Real-Time Simulation

9-106



Simulate with an Explicit Fixed-Step Solver
1 Configure the model for fixed-step simulation with explicit fixed-step solver ode5. In

the configuration parameters Solver pane, set:

• Type to Fixed-step
• Solver to ode5 (Dormand-Prince)

Click OK.
2 Filter the input signal to provide the required input derivative for the explicit solver.

In the PS-S Simulink Converter block dialog box, on the Input Handling tab, set
Filtering and derivatives to Filter Input. Click OK.

 Determine System Stiffness

9-107



3 Simulate the model.
4 Assign the simulation results to new variables.

yOde5 = yout;
tOde5 = tout;

5 Use the stairs function to plot the results of the explicit fixed-step simulation.

h1
hold on
stairs(tOde5,yOde5,'r-')
h1Leg = legend({'Reference','Implicit Solver','Explicit Solver'});

The results differ at the inflection points.

9 Real-Time Simulation

9-108



Analyze the Results
1 To see the results more closely, zoom to the inflection point just after time t = ~ 1

second.

The implicit solver follows a path that is similar to the path that the variable-step
solver takes when generating the reference results. The oscillations that the explicit
solver exhibits indicate that the model is numerically stiff. The oscillations also
indicate that the explicit solver is more computationally costly than the implicit
solver for simulating the stiff model. Use a global or local implicit fixed-step solver
for real-time simulation with numerically stiff models to avoid unnecessary
computational cost.

 Determine System Stiffness

9-109



See Also
stairs

Related Examples
• “Reduce Numerical Stiffness” on page 9-56
• “Determine Step Size” on page 9-17

More About
• “Filtering Input Signals and Providing Time Derivatives” on page 5-26
• “Real-Time Model Preparation Workflow” on page 9-6
• “Solvers for Real-Time Simulation” on page 9-97
• “Stiffness” on page 5-3

9 Real-Time Simulation

9-110



Estimate Computation Costs
Estimating computational cost helps you to determine if your model is likely to cause an
overrun when you simulate it on your real-time processor. Computational cost is the
execution time per time step during simulation. To estimate the time that it takes for
your model to execute on real-time hardware, estimate the simulation execution-time
budget for your real-time target machine.

To estimate the simulation execution-time, first, measure the execution time of desktop
simulation for a particular model. Then determine the average execution time per time
step on the real-time target machine for the same model. Knowing how these execution
times compare for one model means that you can estimate execution time on the real-
time target machine from desktop simulation execution time when you test other models.
Having an estimate for the execution-time budget helps you to choose a feasible
combination of solver settings for fixed-step, fixed-cost simulation.

During each time step, the real-time target machine must perform the procedures that
the figure shows.

The equation for determining the minimum step size to specify for the fixed-step solver to
avoid simulation overrun is

Ts TET HLTmin max max ,= +

 Estimate Computation Costs

9-111



where

• TET is the task execution time. Task execution time involves calculating the
simulation results for the time step, processing inputs from and writing outputs to the
development computer, and performing general computing tasks such as buffering
data and accessing memory.

• HLT is the hardware latency time. Hardware latency time includes scheduling,
interrupt, and input/output (I/O) latency.

• Tsmin is the minimum step size.

If the time that it takes for the target machine to execute the simulation and handle
latency processes is less than the specified time step, the processor remains idle during
the remainder of the step. That is,

Ts TET HLT IT= + +
max max

,

where

• Ts is the step size that you specify for the fixed-step solver.
• IT is the idle time.

This equation can be rearranged as:
TET Ts HLT IT

max max
,= - -

The task execution, hardware latency, and idle times vary, but you can implement a
safety margin by specifying the idle time in the budget calculation as a function of the
step size for the fixed-step solver. For example, if you specify a step size of 1e-5 for the
solver, and you want a 20% safety margin, then IT = (0.2)*(1e-5).

Therefore, the amount of time available for simulation execution can be calculated as
follows:

TET Ts HLT SMT Tsmax max * ,= - - ( ) ( )ÈÎ ˘̊

where

• SMT is the desired safety margin, specified as a percent.

9 Real-Time Simulation

9-112



See Also

Related Examples
• “Reduce Computation Costs” on page 9-27

More About
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Simulation Phases in Dynamic Systems” (Simulink)

 See Also

9-113



Choose Step Size and Number of Iterations

In this section...
“Obtain Reference Results” on page 9-115
“Determine Maximum Step Size for Accurate Results” on page 9-117
“Parameterize Global and Local Solver Settings” on page 9-119
“Perform Fixed-Step, Fixed-Cost Simulation” on page 9-120
“Adjust Solver Settings to Improve Accuracy” on page 9-124

The step size and number of iterations that you specify for solvers in your model affect
the speed and accuracy of your real-time simulation. If you decrease the step size or
increase the number of iterations, the results are more accurate, but the simulation runs
slower. If you increase the step size or decrease the number of iterations, the simulation
runs faster, but the results are less accurate.

To optimize your model for simulation on a real-time target machine, specify a
combination of step size (Ts) and number of iterations (N) that provides acceptable
accuracy and the speed to avoid an overrun. As with solver type, you can specify different
combinations of Ts and N values for the Simulink global solver and for each independent
Simscape network in your model.

This workflow helps you to select the step size and number of iterations for real-time
simulation:

• Obtain reference results by performing variable-step simulation on a model of a
hydraulic actuator.

• Use a modified version of the model to determine the maximum step size to use to
achieve accurate enough results from a fixed-step, fixed-cost simulation. Fixed-step,
fixed-cost simulation is required for real-time simulation.

• Specify global and local fixed-step, fixed-cost solver settings for the modified version
of the model.

• Perform a timed simulation with the modified model and evaluate the accuracy of the
results.

• Adjust the step size and number of iterations to find solver settings that provide the
required speed and accuracy for real-time simulation.

9 Real-Time Simulation

9-114



Obtain Reference Results

To obtain reference results, simulate the original version of the hydraulic actuator model.

1 To open the hydraulic actuator model, at the MATLAB command prompt, enter:

model = 'ssc_hydraulic_actuator_digital_control';
open_system(model)

2 The model is configured to limit data points. To configure the model to log all dat
points, open the model configuration parameters, and in the Simscape pane, clear
the Limit data points check box.

3 Simulate the model.

sim(model)
4 Extract the data for pressure and simulation-step time from the logged Simscape

node.
simlogRef = simlog_ssc_hydraulic_actuator_digital_control;
pRefNode = simlogRef.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pRef = pRefNode.series.values('Pa');
tRef = pRefNode.series.time;

5 Plot the step size.

h1 = figure;
semilogy(tRef(1:end-1),diff(tRef),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')

 Choose Step Size and Number of Iterations

9-115



The maximum step size (Tsmax) for obtaining accurate real-time results for the
original model is approximately 1e-2 seconds. For information on determining Tsmax,
see “Determine Step Size” on page 9-17.

6 Plot the simulation results.

h2 = figure;
plot(tRef,pRef, 'b-')
h2Legend1 = legend({'Reference'},'Location','southoutside');
title('Cylinder Pressure')
xlabel('Time (s)')
ylabel('Pressure (Pa)')

9 Real-Time Simulation

9-116



Determine Maximum Step Size for Accurate Results

In a modified version of the hydraulic actuator model, you can change the value of Tsmax,
the maximum step size for achieving accurate real-time simulation results.

1 Open the modified hydraulic actuator model.

ssc_hydraulic_actuator_HIL

 Choose Step Size and Number of Iterations

9-117



This version of the hydraulic actuator contains a discretized, partitioned controller.
The local solver for the hydraulic actuator subsystem is enabled for fixed-step, fixed-
cost simulation. The step size is parameterized (ts) so that you can make solver
adjustments that decrease the likelihood of generating an overrun. For an example
that shows how to discretize the controller for the hydraulic actuator, see “Hydraulic
Actuator Configured for HIL Testing”.

2 To determine the maximum step size to use for achieving accurate real-time
simulation results, you simulate with a global, variable-step solver. To configure the
modified model for variable-step simulation using the global solver, disable the local
solver configuration. In the Hydraulic Actuator subsystem, in the Solver
Configuration block dialog box, clear the Use local solver check box.

3 Simulate the model.
4 Extract the data for pressure and time from the logged Simscape node.

simlog0 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim0 = simlog0.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim0 = pNodeSim0.series.values('Pa');
tSim0 = pNodeSim0.series.time;

5 Plot the step size to the figure that contains the step-size data for the original model.

figure(h1)
hold on
semilogy(tSim0(1:end-1),diff(tSim0),'--x', 'Color','r',...
    'LineWidth',.1,'MarkerSize',5)
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')
h1Legend1 = legend({'Reference','Modified'},...
    'Location','southoutside');

9 Real-Time Simulation

9-118



For the discretized model, Tsmax is between 1e-2 and 1e-3 seconds.

Parameterize Global and Local Solver Settings
To reduce the number of steps for finding the optimal real-time-simulation solver
settings, parameterize the solver configuration with workspace variables. In the
Hydraulic Actuator Discrete Model, the step size for the local solver configuration is
specified as the workspace variable ts. For this example, you also use workspace
variables to parameterize the global step size (tsG) and the local number of nonlinear
iterations (N).

1 For the modified model, in the model configuration parameters dialog box, specify
these settings:

 Choose Step Size and Number of Iterations

9-119



Pane Parameter Value Purpose
Solver Type Fixed-step Configure the global

solver of the modified
model for fixed-step
simulation.

Solver discrete (no
continuous
states)

Configure the global
solver to match the
state of the controller.

Additional
options > Fixed-
step size
(fundamental
sample time)

tsG Parameterize the
global step size.

Simscape Limit data points Clear the check box. As you decrease the
solver step size, the
number of data points
that the simulation
generates increases.
Clear the option to
ensure that you collect
all the data that you
need for evaluating
simulation accuracy.

2 Configure the local solver for fixed-step simulation. In the Hydraulic Actuator
subsystem, in the Solver Configuration block dialog box, select Use local solver.

3 To parameterize the cost of the simulation, set Nonlinear iterations to N.

Perform Fixed-Step, Fixed-Cost Simulation

You can determine if your solver settings are appropriate for real-time simulation by
simulating the model and then evaluating the accuracy of the results and the speed of
the simulation. To evaluate accuracy, compare the results to the reference results and to
the results of other fixed-step, fixed-cost simulations. To evaluate simulation speed,
compare the elapsed time to the specified simulation time and to the simulation
execution budget. If the speed or accuracy is not acceptable, adjust the step size and
number of iterations to make your model real-time capable.

9 Real-Time Simulation

9-120



The simulation execution-time budget for this example is four seconds. For information
on determining the execution-time budget for your model, see “Estimate Computation
Costs” on page 9-111.

1 For the first simulation, specify both the global and local step size as the largest
possible value of Tsmax from the step plot. Specify a relatively large value for the step
size for both solvers and three for the number of nonlinear iterations for the local
solver.

ts = 1e-2;
tsG = 1e-2;
N = 3;

2 Perform a timed fixed-step, fixed-cost simulation.

tic; sim('ssc_hydraulic_actuator_HIL'); tSim1 = toc;
time1 = max(tSim1);

3 Extract the data for pressure and simulation time from the logged Simscape node.

simlog1 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim1 = pNodeSim1.series.values('Pa');
tSim1 = pNodeSim1.series.time;

4 Plot the simulation results to the figure that contains the reference results. Write
the elapsed time to the figure legend.

figure(h2)
hold on
plot(tSim1, pSim1, 'g--')
delete(h2Legend1)
configSim1L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim1G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim1T = ['Time=',num2str(time1)]; 
cfgSim1 = [configSim1L,configSim1G,timeSim1T];
h2Legend2 = legend({'Reference',num2str(cfgSim1)},...
    'Location','southoutside');

 Choose Step Size and Number of Iterations

9-121



The elapsed time varies because it depends on the immediate computational capacity
of the computer that runs the simulation. The elapsed times in the legend are from
simulation on a 3.6 GHz Intel® CPU with a 16-GB memory. Your legend contains
the elapsed time for the simulation on your computer.

The simulation took less time to complete than the specified simulation time (10 s) so
it runs faster than real time on the development computer. The elapsed time is also
less than the simulation execution-time budget for this example (four seconds).
Therefore, the specified solver configuration provides an acceptable safety margin for
real-time simulation on the target machine that provided the budget data.

5 Zoom to an inflection point to evaluate the accuracy of the results.

9 Real-Time Simulation

9-122



figure(h2)
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 3.5e6;
xZoomStart = 0.3;
xZoomEnd = 0.6;
yZoomStart = 2.6e6;
yZoomEnd = 3.5e6;
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])

Theoretical and empirical data support the reference results. The accuracy of the
simulation results is not acceptable because the solver oscillates before it converges
on the solution in the reference data.

 Choose Step Size and Number of Iterations

9-123



If you can achieve acceptable result accuracy, but the simulation runs too slowly for a
given execution-time budget, increase speed by increasing the step size or decrease the
number of iterations.

When you find a combination of solver settings that provide accurate enough results and
a simulation speed that fits your execution-time budget, you can attempt to run your
model on a real-time target machine by performing the hardware-in-the-loop simulation
workflow. If you cannot find the right combination of solver settings, perform the real-
time model preparation workflow or increase your real-time computing capability to
improve simulation speed and accuracy. To increase your real-time computing capability,
upgrade your target hardware or partition your model for parallel processing.

Adjust Solver Settings to Improve Accuracy
You can generally improve accuracy by increasing the number of iterations or by
decreasing the step size.

1 Try to improve accuracy by increasing the number of iterations (N) to 10.

N = 10;
2 Run a timed simulation.

tic; sim('ssc_hydraulic_actuator_HIL'); tSim2 = toc;
time2 = max(tSim2);

3 Extract the pressure and simulation time data.
simlog2 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim2 = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim2 = pNodeSim2.series.values('Pa');
tSim2 = pNodeSim2.series.time;

4 Plot the results.

figure(h2)
hold on
plot(tSim2, pSim2, 'r:')
delete(h2Legend2)
axis([xStart xEnd yStart yEnd])
configSim2L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim2G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim2T = ['Time=',num2str(time2)]; 
cfgSim2 = [configSim2L,configSim2G,timeSim2T];
h2Legend3 = legend({'Reference',num2str(cfgSim1),num2str(cfgSim2)},...
    'Location','southoutside');

9 Real-Time Simulation

9-124



The simulation is fast enough for real-time simulation because it took less time to
run than the four-second simulation execution budget.

5 Zoom to evaluate accuracy.

figure(h2)
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])

 Choose Step Size and Number of Iterations

9-125



Overall, the results are not much more accurate than the results from the simulation
with fewer iterations.

6 Try to improve accuracy by decreasing the step size to 1e-3 seconds for the local and
global solvers. Specify 3 for the number of iterations (N).

ts = 1e-3;
tsG = 1e-3;
N = 3;

7 Run a timed simulation.

tic; sim('ssc_hydraulic_actuator_HIL'); tSim3 = toc;
time3 = max(tSim3);

9 Real-Time Simulation

9-126



8 Extract the pressure and simulation time data.

simlog3 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim3 = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim3 = pNodeSim3.series.values('Pa');
tSim3 = pNodeSim3.series.time;

9 Plot the results.

figure(h2)
hold on
plot(tSim3, pSim3, 'k--')
delete(h2Legend3)
axis([xStart xEnd yStart yEnd])
configSim3L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim3G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim3T = ['Time=',num2str(time3)]; 
cfgSim3 = [configSim3L,configSim3G,timeSim3T];
h2Legend4 = legend...
    ({'Reference',num2str(cfgSim1),num2str(cfgSim2),num2str(cfgSim3)},...
    'Location','southoutside');

 Choose Step Size and Number of Iterations

9-127



The simulation takes longer but is fast enough given the four-second simulation
execution-time budget.

10 Zoom to evaluate accuracy better.

figure(h2)
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])

9 Real-Time Simulation

9-128



The accuracy of the results is acceptable. For real-time simulation with the modified
model, use the solver settings that provided acceptable speed and accuracy:

• Three nonlinear iterations
• Global and local step sizes of 1e-3 seconds

If you can achieve accurate enough results, but the simulation runs too slowly for your
execution-time budget, improve speed by increasing the step size or decreasing the
number of iterations.

When you find a combination of solver settings that provides accurate enough results and
a simulation speed that is less than your execution-time budget, you can run your model

 Choose Step Size and Number of Iterations

9-129



on a real-time target machine. To run your model on a real-time target machine, perform
the hardware-in-the-loop simulation workflow.

If you cannot find the right combination of solver settings for real-time simulation,
improve simulation speed and accuracy by modifying the scope or fidelity of your model.
For more information, see “Real-Time Model Preparation Workflow” on page 9-6.

If you cannot make your model real-time capable by changing the scope or fidelity of your
model, increase your real-time computing capability. For more information, see
“Upgrading Target Hardware” on page 9-15 and “Simulating Parts of the System in
Parallel” on page 9-15.

See Also

Related Examples
• “Determine Step Size” on page 9-17
• “Determine System Stiffness” on page 9-104
• “Estimate Computation Costs” on page 9-111

More About
• “Filtering Input Signals and Providing Time Derivatives” on page 5-26
• “Fixed-Cost Simulation for Real-Time Viability” on page 9-89
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Improving Speed and Accuracy” on page 9-12
• “Log and Plot Simulation Data” on page 11-9
• “Real-Time Model Preparation Workflow” on page 9-6
• “Solvers for Real-Time Simulation” on page 9-97
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131

9 Real-Time Simulation

9-130



What Is Hardware-In-The-Loop Simulation?
Hardware-in-the-loop (HIL) simulation is a type of real-time simulation. You use HIL
simulation to test your controller design. HIL simulation shows how your controller
responds, in real time, to realistic virtual stimuli. You can also use HIL to determine if
your physical system (plant) model is valid.

In HIL simulation, you use a real-time computer as a virtual representation of your plant
model and a real version of your controller. The figure shows a typical HIL simulation
setup. The desktop computer (development hardware) contains the real-time capable
model of the controller and plant. The development hardware also contains an interface
with which to control the virtual input to the plant. The controller hardware contains the
controller software that is generated from the controller model. The real-time processor
(target hardware) contains code for the physical system that is generated from the plant
model.

 What Is Hardware-In-The-Loop Simulation?

9-131



Why Perform Hardware-In-The-Loop Simulation?

Use HIL simulation to test the design of your controller when you are performing Model-
Based Design (MBD). The figure shows where HIL simulation fits into the MBD design-
to-realization workflow.

9 Real-Time Simulation

9-132



Validation involves using actual plant hardware to test your controller in real-life
situations or in environmental proxies (for example, a pressure chamber). In HIL
simulation, you do not have to use real hardware for your physical system (plant). You
also do not have to rely on a naturalistic or environmental test setup. By allowing you to
use your model to represent the plant, HIL simulation offers benefits in cost and
practicality.

There are several areas in which HIL simulation offers cost savings over validation
testing. HIL simulation tends to be less expensive for design changes. You can perform
HIL simulation earlier than validation in the MBD workflow so you can identify and
redesign for problems relatively early the project. Finding problems early includes these
benefits:

• Your team is more likely to approve changes.

 What Is Hardware-In-The-Loop Simulation?

9-133



• Design changes are less costly to implement.

In terms of scheduling, HIL simulation is less expensive and more practical than
validation because you can set it up to run on its own.

HIL simulation is more practical than validation for testing your controller’s response to
unusual events. For example, you can model extreme weather conditions like
earthquakes or blizzards. You can also test how your controller responds to stimuli that
occur in inaccessible environments like deep sea or deep space.

See Also

Related Examples
• “Generate, Download, and Execute Code” on page 9-150

More About
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135

9 Real-Time Simulation

9-134



Hardware-In-The-Loop Simulation Workflow
In this section...
“Perform Hardware-In-The-Loop Simulation” on page 9-139
“Insufficient Computational Capability for Hardware-In-The-Loop Simulation” on page
9-140

This figure shows the hardware-in-the loop simulation workflow. The connectors are exit
points for returning to the real-time model preparation workflow.

 Hardware-In-The-Loop Simulation Workflow

9-135



This figure shows the real-time model preparation workflow. The connector is an entry
point for returning to the real-time model preparation workflow from other real-time
workflows such as the hardware-in-the-loop simulation workflow.

9 Real-Time Simulation

9-136



This figure shows the real-time simulation workflow. The connectors are exit points for
returning to the real-time model preparation workflow.

 Hardware-In-The-Loop Simulation Workflow

9-137



Before performing the hardware-in-the-loop (HIL) simulation workflow:

1 Prepare and configure your model for real-time simulation. For information, see
“Real-Time Model Preparation Workflow” on page 9-6 and “Real-Time Simulation
Workflow” on page 9-91.

9 Real-Time Simulation

9-138



2 Set up and configure the software, I/O interfaces, and connectivity for your
development computer, target computer, and I/O board. For information, see
Simulink Real-Time Setup and Configuration (Simulink Real-Time).

3 If you are performing HIL simulation to test your controller:

• Configure your controller.
• Connect your controller to the real-time computer.

Perform Hardware-In-The-Loop Simulation

Generate, Download, and Execute Code

Use Simulink Real-Time to:

• Generate and compile code on the development computer.
• Download the real-time application to the target computer.
• Execute the real-time application remotely from the development computer.

For information, see “Generate, Download, and Execute Code” on page 9-150.

Evaluate Accuracy

Compare the results from the simulation on the target computer to your reference
results. Are the reference and modified model results the same? If not, are they similar
enough that the empirical or theoretical data also supports the results from the
simulation of the modified model? Is the modified model representing the phenomena
that you want it to measure? Is it representing those phenomena correctly? If you plan on
using your model to test your controller design, is the model accurate enough to produce
results that you can rely on for system qualification? The answers to these questions help
you to decide if your real-time results are accurate enough.

Evaluate Speed

To find out if your simulation generates an overrun, examine the task execution time
(TET) report that Simulink Real-Time generates for the simulation.

Return to the Real-Time Model Preparation Workflow

Your model is not real-time capable if simulation on your real-time target machine
generates an overrun or produces results that do not match your reference results closely

 Hardware-In-The-Loop Simulation Workflow

9-139



enough. To make your model real-time capable by adjusting model fidelity, return to the
real-time model preparation or real-time simulation workflow.

Adjust the fidelity or scope of your model, and then step through the other processes and
decisions in the real-time model preparation workflow. Iterate on adjusting, simulating,
and analyzing your model until it is fast and accurate enough for you to perform the real-
time simulation workflow. Perform the real-time simulation workflow, and then attempt
the hardware-in-the-loop simulation workflow again. For information, see “Real-Time
Model Preparation Workflow” on page 9-6 and “Real-Time Simulation Workflow” on page
9-91.

Return to the Real-Time Simulation Workflow

Your model is not real-time capable if simulation on your real-time target machine
generates an overrun or produces results that do not match your reference results closely
enough. To make your model real-time capable by adjusting the simulation solver
settings, return to the real-time simulation workflow.

Perform the real-time simulation workflow, and then attempt the hardware-in-the-loop
simulation workflow again. For information, see “Real-Time Simulation Workflow” on
page 9-91.

Insufficient Computational Capability for Hardware-In-The-Loop
Simulation

Your real-time target machine can lack the computational capability for running your
model in real time. If your model fails to run in real time or produces unreliable results
on your target machine after multiple iterations of the real-time workflows, consider
these options for increasing processing power:

• “Upgrading Target Hardware” on page 9-15
• “Simulating Parts of the System in Parallel” on page 9-15

See Also

Related Examples
• “Generate, Download, and Execute Code” on page 9-150

9 Real-Time Simulation

9-140



More About
• “Real-Time Model Preparation Workflow” on page 9-6
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “Real-Time Simulation Workflow” on page 9-91
• “Code Generation Requirements” on page 9-142

 See Also

9-141



Code Generation Requirements

In this section...
“Hardware Requirements” on page 9-142
“Software Requirements” on page 9-143

Code generation for hardware-in-the-loop (HIL) simulation with Simulink Real-Time
requires specific hardware and software.

Hardware Requirements

The minimum hardware requirements for HIL simulation with Simulink Real-Time are:

• Development computer with a network or serial interface. For information on
development computer specifications, see Development Computer Requirements
(Simulink Real-Time).

• Real-time target computer system, containing this hardware:

• CPU. For information on real-time target computer specifications, see “Target
Computer Requirements” (Simulink Real-Time).

• I/O board. For information on supported I/O boards and for writing custom drivers
for unsupported boards, see Supported Hardware: Hardware Drivers, “I/O Boards”
(Simulink Real-Time), and “Custom Simulink Real-Time Drivers” (Simulink Real-
Time) .

• Protocol interface
• Controller, preconfigured with code from your controller model
• Connection cable for linking the development computer to the real-time target

machine. For information, see “PCI Bus Ethernet Setup” (Simulink Real-Time) and
“USB-to-Ethernet Setup” (Simulink Real-Time).

• Peripherals that provide a way to:

• Boot the real-time target computer
• Transfer the Simulink Real-Time operating system and executable code to the

real-time target computer

For information, see “Peripherals” (Simulink Real-Time).

9 Real-Time Simulation

9-142

http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html


• Wiring harness to connect the real-time target computer to the controller.

Software Requirements

For information on the minimum software requirements for HIL simulation with
Simulink Real-Time, see Simulink Real-Time Software Requirements. The Simulink
Real-Time requirements include a C compiler. For information, see Simulink Real-
Time C Compiler Requirements and “Command-Line C Compiler Configuration”
(Simulink Real-Time).

Note If you want more configuration options for code optimization, use Embedded
Coder® to generate code for your real-time computer. For information, see “Embedded
Coder Product Description” (Embedded Coder).

See Also
Simulink Real-Time Explorer

Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Create and Run Real-Time Application from Simulink Model” (Simulink Real-

Time)

More About
• “About Code Generation from Simscape Models” on page 10-2
• “How Simscape Code Generation Differs from Simulink” on page 10-5
• “Limitations” on page 11-3
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135

 See Also

9-143

https://www.mathworks.com/products/availability.html#XP
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/


Software and Hardware Configuration
Before simulating your Simscape model on your target hardware using Simulink Real-
Time, configure your development and target computers for code generation and real-
time simulation:

1 Install Simulink Real-Time software on your development computer. The
development computer downloads the kernel software and real-time application to
your target machine at run time. Code generation and hardware-in-the-loop (HIL)
simulation with Simulink Real-Time require specific hardware and software,
including a C compiler. For information, see “Code Generation Requirements” on
page 9-142. For Simulink Real-Time installation and configuration information, see
Simulink Real-Time Software Requirements and “Development Computer Software
Installation” (Simulink Real-Time).

2 Configure your real-time target computer for HIL with Simulink Real-Time. For
Simulink Real-Time to work properly on the target computer, you configure the
target settings to match the settings of the development computer and boot the
target machine. For information, see “Target Computer Settings” (Simulink Real-
Time) and “Target Computer Boot Methods” (Simulink Real-Time). See also “Target
Computer Requirements” (Simulink Real-Time).

3 Configure your target computer with the required I/O modules. You can link to I/O
boards via connection cables or install them in PCI slots of the target computer. The
I/O boards provide a direct interface to the sensors, actuators, and other devices for
real-time control or signal processing system models.

For information on supported I/O boards and for writing custom drivers for
unsupported boards, see Supported Hardware: Hardware Drivers, “Target Computer
Requirements” (Simulink Real-Time), and “Custom Simulink Real-Time Drivers”
(Simulink Real-Time).

4 Configure your development computer for Ethernet communication with your target
computer. For information, see “Development Computer Communication Setup”
(Simulink Real-Time).

5 Physically connect your target computer to your development computer. For
information, see “PCI Bus Ethernet Setup” (Simulink Real-Time) and “USB-to-
Ethernet Setup” (Simulink Real-Time).

6 Configure the Simulink Real-Time target settings. For a configuration procedure
that uses Simulink Real-Time, see “Target Computer Settings” (Simulink Real-
Time).

9 Real-Time Simulation

9-144

https://www.mathworks.com/products/availability.html#XP
http://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html


See Also
Simulink Real-Time Explorer

More About
• “Code Generation Requirements” on page 9-142
• “Target Computer Boot Methods” (Simulink Real-Time)
• “Target Computer Settings” (Simulink Real-Time)
• “Select and Configure C or C++ Compiler or IDE” (Simulink Coder)
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135

 See Also

9-145



Signal and Parameter Visualization and Control
The Simulink Real-Time environment contains an interface for your target computer.
The interface provides these capabilities for signal acquisition:

• Create, save, and load signal groups.
• Monitor signals.
• Add and configure host, target machine, or file scopes.
• Attach signals to or remove signals from scopes.
• Start and stop scopes.
• Attach signals to instruments.

The Simulink Real-Time interface also provides these capabilities for changing
parameters:

• Create, save, and load parameter groups.
• Display and change parameter values.
• Attach parameters to instruments.

You can use the Simulink Real-Time interface from MATLAB or Simulink. You can also
use other development environments to create custom standalone client applications
outside of MATLAB. Therefore, there are several ways that you can visualize and control
signals and parameters in a real-time application from development and target
computers.

This table compares the interfaces that Simulink Real-Time supports for signal
visualization and parameter control.

Interface Signal
Acquisition

Parameter
Control

Can Run
Outside of
MATLAB

Simulink Real-Time Explorer Yes Yes Yes
“MATLAB Command-Line Interface” (Simulink
Real-Time) Yes Yes No

“Simulink External Mode Interface” (Simulink
Real-Time) Yes Yes No

9 Real-Time Simulation

9-146



Interface Signal
Acquisition

Parameter
Control

Can Run
Outside of
MATLAB

“Simulink with Simulink Real-Time Blocks”
(Simulink Real-Time) Yes No No

“Target Computer Command-Line Interface”
(Simulink Real-Time) Yes Yes Yes

“Custom UI with Simulink Real-Time API for
Microsoft .NET Framework” (Simulink Real-Time) Yes Yes Yes

“Custom UI with Simulink Real-Time C API”
(Simulink Real-Time) Yes Yes Yes

See Also
slrtexplr | slrt

Related Examples
• “Monitor Signals with Simulink Real-Time Explorer” (Simulink Real-Time)
• “Monitor Signals with MATLAB Language” (Simulink Real-Time)
• “Configure Real-Time Target Scope Blocks” (Simulink Real-Time)
• “Tune Parameters with Simulink Real-Time Explorer” (Simulink Real-Time)

More About
• “Tunable Block Parameters and Tunable Global Parameters” (Simulink Real-Time)
• “Signal Monitoring Basics” (Simulink Real-Time)
• “Signal Tracing Basics” (Simulink Real-Time)
• “Simulink Real-Time Scope Usage” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Using the C API” (Simulink Real-Time)
• “Using the Simulink Real-Time API for Microsoft .NET Framework” (Simulink

Real-Time)

 See Also

9-147



Troubleshoot Hardware-in-the-Loop Simulation Issues
If your real-time application generates an overrun, to improve application execution
time:

• Use the processes described in “Real-Time Model Preparation Workflow” on page 9-6,
“Real-Time Simulation Workflow” on page 9-91, and “Hardware-In-The-Loop
Simulation Workflow” on page 9-135.

• Run the Simulink Real-Time Performance Advisor Checks. Use the Execute real-
time application activity mode in Performance Advisor, which includes checks
specific to physical models. The mode helps you optimize your Simscape model for
real-time execution. The checks are organized in folders. The checks in the Simscape
checks folder are applicable to all physical models. Subfolders contain checks that
target blocks from add-on products such as Simscape Power Systems™, Simscape
Driveline™, and Simscape Electronics.

To access the checks:

1 In the Simulink Editor menu bar, select Analysis > Performance Tools >
Performance Advisor.

2 In the Performance Advisor window, under Activity, select Execute real-
time application.

3 In the left pane, expand the Real-Time folder, and then the Simscape checks
folder.

4 Run the top-level Simscape checks. If your model contains blocks from an add-on
product, also run the checks in the subfolder corresponding to that product.

For more information, see “Improve Run-Time Performance” (Simulink Real-Time)
and “Simulink Real-Time Performance Advisor Checks” (Simulink Real-Time).

A Simulink Real-Time simulation can also fail due to development and target computer
issues, changes in underlying system software, I/O module issues, and procedural errors.
To address these issues, follow the workflow in “Troubleshooting Process” (Simulink
Real-Time). For more information, see “Troubleshooting in Simulink Real-Time”
(Simulink Real-Time)

9 Real-Time Simulation

9-148



See Also

More About
• “Real-Time Model Preparation Workflow” on page 9-6
• “Real-Time Simulation Workflow” on page 9-91
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Troubleshooting Real-Time Simulation Issues” on page 9-102
• “Automated Performance Optimization” (Simulink)

 See Also

9-149



Generate, Download, and Execute Code

In this section...
“Requirements for Building and Executing Simulink Real-Time Applications” on page 9-
150
“Create, Build, and Download a Real-Time Application” on page 9-150
“Execute Real-Time Application” on page 9-151

To perform hardware-in-the-loop simulation on target hardware, use Simulink Real-
Time to:

• Generate and compile code on the development computer.
• Download the real-time application to the target computer.
• Execute the real-time application remotely from the development computer.

Requirements for Building and Executing Simulink Real-Time
Applications

Before building and executing your real-time application:

1 Prepare and configure your model for real-time simulation. For information, see
“Real-Time Model Preparation Workflow” on page 9-6 and “Real-Time Simulation
Workflow” on page 9-91.

2 Set up and configure the software, I/O interfaces, and connectivity for your
development computer, target computer, and I/O board. For information, see
Simulink Real-Time Setup and Configuration (Simulink Real-Time) and “MATLAB
Command-Line Interface” (Simulink Real-Time).

Create, Build, and Download a Real-Time Application

To generate code for the model on your development computer, and then to transfer the
code to your real-time computer:

1 Set the Simulink Real-Time code generation configuration parameters. For
information, see “Set Configuration Parameters” (Simulink Real-Time) and
“MATLAB Command-Line Interface” (Simulink Real-Time).

9 Real-Time Simulation

9-150



2 Start the target computer. For information, see “Start Target Computer” (Simulink
Real-Time).

3 To compile your code, link your hardware, and download the real-time application to
your target machine in one step, in the Simulink editor, click the Build Model

button . For information, see “Build and Download Real-Time Application”
(Simulink Real-Time).

Execute Real-Time Application

After you build and download a real-time application to the target computer, you can run
the real-time application.

1 In the Simulink window, on the toolbar, set the simulation mode to External.

Selecting external mode allows you to connect your development computer to your
real-time target machine.

2 To connect your development computer and target machine and to transfer your

model parameters to the target machine, click the Connect to Target button .
3 To execute your real-time application on the target machine, click the Run button

.

See Also
slrtexplr

See Also

Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)

 See Also

9-151



• “Create and Run Real-Time Application from Simulink Model” (Simulink Real-
Time)

More About
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “About Code Generation from Simscape Models” on page 10-2
• “How Simscape Code Generation Differs from Simulink” on page 10-5
• “Code Generation Requirements” on page 9-142
• “Build Real-Time Application” (Simulink Real-Time)

9 Real-Time Simulation

9-152



Check for Target Hardware Overruns

In this section...
“Prerequisites” on page 9-153
“About Simulation Overruns” on page 9-153
“Generate Reference Results” on page 9-154
“Configure Model for Deployment” on page 9-155
“Evaluate Task-Execution Time” on page 9-157
“Adjust Step Size Based on Maximum Task-Execution Time” on page 9-159

This example shows how to:

• Configure a Simulink Real-Time Scope block to acquire signal data during a real-time
simulation on target hardware.

• Use TLCOptions settings to execute through CPU overloads on your target hardware.
• Use a Simulink target object to check for overruns and find the minimum solver step

size for avoiding overruns.
• Verify that results from a simulation that uses a larger time step are acceptably

accurate.

Prerequisites

This example requires an active connection between your development computer and a
real-time target machine. For information on configuring and connecting your
development computer to target hardware, see Simulink Real-Time Setup and
Configuration (Simulink Real-Time).

About Simulation Overruns

An overrun occurs when a target machine cannot compute the results for an individual
time step in a simulation because the processing tasks for the step overload the CPU in
the target machine. By default, when the Simulink Real-Time kernel detects a CPU
overload, it stops model execution on the real-time target machine. You can use Simulink
and Simulink Real-Time tools to determine the task execution time (TET) for the step
that causes the overrun so that you can adjust your sample time (Ts) accordingly.

 Check for Target Hardware Overruns

9-153



However, because it is possible that a larger TET occurs later in the simulation, your
model might generate another overrun when you next simulate.

You can direct the Simulink Real-Time environment using TLCOptions settings to allow
CPU overloads so the target machine can execute through overruns. When your target
machine executes to completion, you can determine the maximum task-execution time
(TETmax) for the entire simulation. You can then use TETmax to determine the minimum
step size (Tsmin) that your target machine requires to execute your model in real time
without generating an overrun. For information on using TETmax to determine Tsmin, see
“Estimate Computation Costs” on page 9-111.

The tools that you can use to check for overruns or determine the maximum TET include:

• Simulink targets objects
• Simulink Real-Time Explorer
• Simulink Real-Time target management blocks

Simulink Real-Time Explorer and Simulink Real-Time target management blocks allow
you to track the data graphically throughout the simulation, while the target object only
reports the number of overruns and the maximum and minimum TET values. However,
because the target management blocks rely on I/O processing during the simulation, they
have a higher computational cost and, therefore, larger TETs than target objects do. For
Simscape models, which tend to have long execution times, it is generally better to use a
target object to check for overruns and determine TET.

The optimal time step for your simulation is one that balances speed with accuracy. If
the executable version of your model overruns on your target machine, you can increase
the size of the solver time step to give the CPU enough time to avoid an overload.

Generate Reference Results

Generate reference results from the model on your development computer so that you
have a benchmark for verifying the accuracy of results from simulating on target
hardware.

1 To open the reference model, at the MATLAB command prompt, enter:

ssc_resistive_ac_circuit
2 Simulate the model.

9 Real-Time Simulation

9-154



3 To see the results, open the Development Scope block.

The current through the resistor is 0.3 A.

Configure Model for Deployment

To prepare your Simscape development model for a real-time simulation on target
hardware, configure it to build an executable that tracks TET and allows you to see
simulation results.

1 Add a Simulink Real-Time Scope block to the Simscape plant model.

a In the Simulink library browser, navigate to the Simulink-Real Time >
Displays and Logging library.

 Check for Target Hardware Overruns

9-155



b Add a Scope block to the Simscape model.
c Connect the scope to the output signal from the PS-Simulink Converter block.

2 Configure Simulink Real-Time Scope block as a host scope.

a Specify the Scope type parameter as Host.
b Set the Number of samples to 100000.
c Click OK.

3 Configure the Simscape model configuration parameters for TET analysis using
Simulink Real-Time.

a Open the model configuration parameters.
b In the left pane of the Model Parameter Configuration window, select Code

Generation.
c Click Browse...
d In the System Target File Browser, for the System Target File, select

slrt.tlc.
e Click OK.
f In the left pane of the Model Parameter Configuration window, select Code

Generation > Verification.
g Select the Measure task execution time check box.
h Click OK.

9 Real-Time Simulation

9-156



Evaluate Task-Execution Time

Connect your development computer to a real-time target machine before you can
complete these steps. For information on configuring and connecting your development
computer to target hardware, see Simulink Real-Time Setup and Configuration
(Simulink Real-Time).

You can use a Simulink Real-Time target object to check for overruns and determine
TET after you simulate in real time on target hardware. The target object, which
communicates with the real-time target machine, reports the status of the real-time
application to the development computer.

1 Run your real-time application on the target hardware.

a
To generate code from your model, click the Build button .

b To set the simulation mode for executing on a target machine, in the Simulink
window, on the toolbar, select External.

c To connect your development computer and target machine and to transfer your
model parameters to the target machine, click the Connect to Target button

.
d To execute your real-time application on the target machine, click the Run

button .
2 To use the target object to print the simulation status, on your development

computer, at the MATLAB command prompt, enter:

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = detected

 Check for Target Hardware Overruns

9-157



   ExecTime             = 0.0000
   SessionTime          = 11.8761
   StopTime             = 1.000000
   SampleTime           = 0.000010
   AvgTET               = 0.000021
   MinTET               = 0.000021
   MaxTET               = 0.000021
   ViewMode             = 0

   TimeLog              = Vector(2) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(2) 
   MaxLogSamples        = 50000
   NumLogWraps          = 0
   LogMode              = Normal

   Scopes               = 1
   NumSignals           = 3
   ShowSignals          = off

   NumParameters        = 2
   ShowParameters       = off

In this case, when the task execution time (maxTET = 0.000021) exceeds the step
size (SampleTime = 0.000010), the Simulink Real-Time kernel detects an overrun
(CPUOverload = detected) and stops the simulation.

3 The simulation stops at the very beginning of the execution even though it has a
specified stop time of 1 second (ExecTime = 0, StopTime = 1.000000). In order to
determine the maximum TET for the entire simulation time, use the Simulink Real-
Time TLCOptions Properties function to configure the real-time application to
continue to run after it detects an overrun. The function allows you to specify target
computer overload values for the Number of acceptable overloads property
programmatically. The application executes through the number of overloads that
you specify, but stops executing if it detects an additional overload.

set_param('ssc_resistive_ac_circuit',...
  'TLCOptions', '-axPCMaxOverloads=200000')

4 To regenerate the code with the new property setting, click the Build button.
5 To reconnect to the target machine, click the Connect To Target button.
6 Run the simulation.

9 Real-Time Simulation

9-158



7 Obtain the statistics.

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = none

   ExecTime             = 1.0000
   SessionTime          = 6.3129
   StopTime             = 1.000000
   SampleTime           = 0.000010
   AvgTET               = 0.000016
   MinTET               = 0.000014
   MaxTET               = 0.000032
   ViewMode             = 0

   TimeLog              = Vector(50000) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(50000) 
   MaxLogSamples        = 50000
   NumLogWraps          = 2
   LogMode              = Normal

   Scopes               = 1
   NumSignals           = 3
   ShowSignals          = off

   NumParameters        = 2
   ShowParameters       = off

The simulation executes to completion with a maximum TET of 0.000032.

Adjust Step Size Based on Maximum Task-Execution Time

Adjust the sample time, rerun the simulation, check for overruns and for the accuracy of
the results.

 Check for Target Hardware Overruns

9-159



1 To avoid simulation overruns, specify a step size that is at least 20% larger than the
TETmax from the simulation on your real-time target machine. At the MATLAB
command prompt, enter:

ts = 4e-5;
2 Remove the overload override.

set_param('ssc_resistive_ac_circuit', 'TLCOptions', '')
3 Regenerate the code.
4 Connect to the target machine.
5 Run the simulation.
6 Obtain the statistics.

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = none

   ExecTime             = 1.0000
   SessionTime          = 8.7715
   StopTime             = 1.000000
   SampleTime           = 0.000040
   AvgTET               = 0.000016
   MinTET               = 0.000015
   MaxTET               = 0.000028
   ViewMode             = 0

   TimeLog              = Vector(25001) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(25001) 
   MaxLogSamples        = 50000
   NumLogWraps          = 0
   LogMode              = Normal

   Scopes               = 1
   NumSignals           = 3
   ShowSignals          = off

9 Real-Time Simulation

9-160



   NumParameters        = 2
   ShowParameters       = off

The simulation executes to completion with a maximum TET of 0.000028.
7 To see the results, open the Development Scope block.

The current through the resistor is 0.3 A. The results match the reference results
and the simulation now runs without yielding an overrun.

See Also
Get Overload Counter | Scope | Set Overload Counter | SimulinkRealTime.target |
TLCOptions | Task Execution Time | Time Stamp Counter | slrt | xPCIsOverloaded

 See Also

9-161



Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Configure Real-Time Host Scope Blocks” (Simulink Real-Time)
• “Generate, Download, and Execute Code” on page 9-150
• “Configure and Control a Real-Time Application” (Simulink Real-Time)

More About
• “Real-Time Model Preparation Workflow” on page 9-6
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “CPU Overload Options” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Host Scope Usage” (Simulink Real-Time)

9 Real-Time Simulation

9-162



Change Parameter Values on Target Hardware

In this section...
“Prerequisites” on page 9-163
“Configure the Simscape Model for Deployment” on page 9-163
“Deploy the Model to the Real-Time Target Machine” on page 9-165
“Change Parameters and See Results Using Simulink Real-Time Explorer” on page 9-
166

This example shows how to:

• Configure a Simscape plant model to generate code that supports signal visualization
and changes to Simscape run-time parameters.

• Use Simulink Real-Time and Simulink Coder to deploy an executable version of the
plant model to a real-time target machine.

• Use Simulink Real-Time Explorer on your development computer to change the value
of a Simscape run-time parameter on the target machine and to see the effects of the
parameter change.

Prerequisites

This example requires an active connection between your development computer and a
real-time target machine. For information on configuring and connecting your
development computer to target hardware, see Simulink Real-Time Setup and
Configuration (Simulink Real-Time).

Configure the Simscape Model for Deployment

To prepare to change parameter values on a real-time target machine, configure the
Simscape run-time, code generation, and scope parameters for your Simscape model on
your development computer.

1 To open the reference model, at the MATLAB command prompt, enter:

ssc_resistive_ac_circuit

 Change Parameter Values on Target Hardware

9-163



The model opens and the PreLoadFcn loads parameters for the model to the
MATLAB workspace. The peak voltage, A_peak_voltage_src, is 3 V, the resistance,
R_resistor, is 10 Ohms, and the step size is 1e-5.

2 To allot enough time to see the effects of parameter-tuning on the target machine,
configure the application to run until you stop the simulation, set the simulation
stop time to inf.

3 Adjust the step size for real-time simulation. At the MATLAB command prompt,
enter:

ts = 4e-5;
4 Configure the model for code generation using Simulink Coder and Simulink Real-

Time.

a Open the model configuration parameters.
b To set the System Target File, on the Code Generation pane, click Browse

and select slrt.tlc.
c In the System Target File Browser window, click OK.
d Open the Report pane.
e To display a code generation report, on the Report pane, select the Create

Code Generation report check box.
f Click OK.

5 Add a Simulink Real-Time Scope block to the Simscape plant model.

a In the Simulink library browser, navigate to the Simulink-Real Time >
Displays and Logging library.

b Add a Scope block to the Simscape model.
c Connect the scope to the output signal from the PS-Simulink Converter block.

9 Real-Time Simulation

9-164



6 Configure Simulink Real-Time Scope block as a host scope.

a Specify the Scope type parameter as Host.
b Set the Number of samples to 100000.
c Click OK.

Deploy the Model to the Real-Time Target Machine
Build an executable application and download it to real-time hardware.

1 Check that you are connected to the real-time target machine, in this case, the target
name is SLRTLABTG2:
tg = slrt

Target: SLRTLABTGT2
Connected            = Yes
Application          = loader

2 To build and download the code to the target machine, in the model window, click

the Build button .

The code report opens after the code download.
3 Verify that the generated code represents the Simscape run-time variables in a data

structure.

 Change Parameter Values on Target Hardware

9-165



a In the Code Generation Report, in the left pane, in the Data files node, open
ssc_resistive_ac_circuit_data.c.

b Search for the section of the code that contains the parameter variables. In the
Find box, enter Block parameters (auto storage).

c Verify that the A_peak_voltage_src and the R_resistor variables are represented
in the P_ssc_resistive_ac_circuit_T ssc_resistive_ac_circuit_P data structure.

Change Parameters and See Results Using Simulink Real-Time
Explorer

Use Simulink Real-Time Explorer to change Simscape run-time parameters between
runs of your real-time application on target hardware. Visualize the simulation results
on a scope in the Explorer window.

1 To open Simulink Real-Time Explorer, on your development computer, at the
MATLAB command prompt, enter:

slrtexplr
2 View the Simscape run-time parameters in Simulink Real-Time Explorer.

a In the Applications pane, expand the real-time application node, in this case,
SLRTLABTGT2/ssc_resistive_ac_circuit.

b Under the real-time application node, expand the Model Hierarchy node.
c Select ssc_resistive_ac_circuit and click the View Parameters button .

The Parameters workspace opens, showing a table of parameters with properties
and actions.

9 Real-Time Simulation

9-166



3 View the host scope in Simulink Real-Time Explorer.

a In the Scopes pane, expand the real-time application node (SLRTLABTGT2/
ssc_resistive_ac_circuit).

b Under the real-time application node, expand the Host Scopes node.
c To open the Scopes workspace, select Scope 1 and click the View Host Scope

button .
d To make both the parameter and scope workspaces visible at the same time,

click the scope workspace tab and drag the tab down until the Pane Move
button  appears in the middle of the dialog box. Release the tab when the
cursor reaches the lower quadrant of the Pane Move button.

 Change Parameter Values on Target Hardware

9-167



4 To see the value for the peak amplitude of the voltage source, click the arrow next to
the A_peak_voltage_src parameter.

The Values text box opens, containing the original value of 3 V for the peak
amplitude.

5 Simulate with the original peak amplitude value. To start execution, click the real-
time application (SLRTLABTGT2/ssc_resistive_ac_circuit) and then click the Start
button  on the Applications toolbar.

9 Real-Time Simulation

9-168



The scope shows that the current is approximately 0.3 A. The defining equation for
the circuit in the model, is I = V/R. The results are correct for the given voltage (10
V) and resistance (3 Ohms).

6 Change the parameter that represents the peak amplitude for the Simscape Voltage
Source block. Because Simscape run-time parameters are run-time configurable,
cannot change the parameter value during simulation. Instead, you stop the
simulation, change the value of the parameter, and apply the parameter change.
Then, you restart the simulation to see how changing the parameter affects the
results.

a To stop execution, click the real-time application in the Applications workspace,
and then click the Stop button .

b Specify 50 in the Values text box for the peak amplitude parameter and press
Enter.

c Click the Apply parameter value changes button .
d Click the Start button  to simulate with the modified peak amplitude value.

 Change Parameter Values on Target Hardware

9-169



The scope shows that the current is approximately 5 A when the peak amplitude
is 50 V. The results reflect the change in the value for the voltage given that the
resistance is 10 Ohms.

7 Modify and revert the value for the resistance of the Resistor block.

a Stop the execution.
b Click the arrow next to the R_resistor parameter.

The Values text box opens, containing the original value of 10 Ohms for the
resistance.

c Specify 2 in the text box, and then press Enter.
d To revert the resistance to its previous value, click the Revert button .

See Also
Scope | SimulinkRealTime.target | slrt | slrtexplr

9 Real-Time Simulation

9-170



Related Examples
• “Generate, Download, and Execute Code” on page 9-150
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Configure and Control a Real-Time Application” (Simulink Real-Time)
• “Tune and Monitor Models Running on Target Hardware” (Simulink)

More About
• “Manage Simscape Run-Time Parameters” on page 8-7
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “Tunable Block Parameters and Tunable Global Parameters” (Simulink Real-Time)
• “Signal Monitoring Basics” (Simulink Real-Time)
• “Simulink Real-Time Scope Usage” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Model Callbacks” (Simulink)

 See Also

9-171



Requirements for Using Alternative Platforms
In this section...
“Hardware Requirements” on page 9-172
“Software Requirements” on page 9-172

Simulink Real-Time creates standalone, real-time applications for performing hardware-
in-the-loop (HIL) simulation on dedicated hardware. Creating and executing a
standalone, real-time application using an alternative platform requires specific
hardware and software.

Hardware Requirements
The minimum hardware requirements for HIL simulation with a custom application are:

• Development computer with a network, serial, or USB interface for communicating
with the real-time processor

• A real-time capable target CPU or computer that supports 64-bit precision floating-
point arithmetic and 32-bit integer size

• I/O board supported by the real-time target machine
• Controller preconfigured with code from your controller model
• Peripheral for transferring code to the real-time target machine
• Wiring harness to connect the real-time target machine to the controller

Note Your real-time target machine may also require a real-time operating system
(RTOS).

Software Requirements
The minimum software requirements for HIL simulation with a custom application are:

• Embedded Coder and the Embedded Coder Software Requirements.
• Simulink Coder and the Simulink Coder Software Requirements.
• Template example main function that you can manually or automatically combine

with generated code. For information, see “Incorporate Generated Code Using an
Example Main Function” (MATLAB Coder).

9 Real-Time Simulation

9-172

https://www.mathworks.com/products/availability.html#EC
https://www.mathworks.com/products/availability.html#RT


• I/O driver. Options are:

• C code I/O drivers for the code generation build
• Precompiled static or dynamic library with the necessary documentation

• Compiler requirements

• C compiler.
• Cross compiler that supports 64-bit precision floating-point arithmetic and 32-bit

integer size.

For details on supported compiler versions, see Supported and Compatible Compilers.

By default, Simulink Coder uses ISO®/IEC 9899:1990 (C89/C90 [ANSI]) library to
produce C code. Not all compilers support this library. To learn how to enable the code
generator to use a different math extensions library in a model, see “Configure
Standard Math Library for Target System” (Simulink Coder).

See Also

More About
• “About Code Generation from Simscape Models” on page 10-2
• “How Simscape Code Generation Differs from Simulink” on page 10-5
• “Hardware-In-The-Loop Simulation Workflow” on page 9-135
• “Limitations” on page 11-3
• “What Is Hardware-In-The-Loop Simulation?” on page 9-131
• “Configure Run-Time Environment Options” (Simulink Coder)

 See Also

9-173

http://www.mathworks.com/support/compilers/current_release


Extending Embedded and Generic Real-Time System Target
Files

Simulink Coder and Embedded Coder use system target files (STFs) to generate code for
interfacing with specific real-time operating systems. The Target Language Compiler
(TLC) uses STFs and various other target files to convert a model into generated code. In
addition to including STFs for ready-to-run configurations, Simulink Coder and
Embedded Coder allow you to extend STFs to support third-party and custom target
hardware. For more information on TLC files and STFs, including a list of available
STFs, see “Configure a System Target File” (Simulink Coder) and “Introduction to the
Target Language Compiler” (Simulink Coder).

Generic real-time (GRT) is a Simulink Coder STF that you can use when you generate
code from a Simscape model for hardware-in-the-loop (HIL) simulation. To generate code
for HIL simulation, you must configure your Simscape model to use a fixed step, local
solver. To learn about Simscape solver configurations that support HIL simulation, see
“Solvers for Real-Time Simulation” on page 9-97.

Embedded real-time (ERT) is an Embedded Coder STF for deploying production-quality
code for real-time execution of the algorithm for your Simulink controller. Do not deploy
code that you generate from a Simscape model to production platforms. Simscape models
contain constructs that are not compatible with performance-related Embedded Coder
Model Advisor checks, such as “Check for blocks not recommended for C/C++ production
code deployment”. For more information, see “Embedded Coder Model Advisor Checks for
Standards, Guidelines, and Code Efficiency” (Embedded Coder).

To extend ERT or GRT system target files and create hardware-specific, standalone
applications, use the toolchain build process approach. The toolchain approach generates
optimized makefiles and supports custom toolchains. For information, see “Customize
System Target Files” (Simulink Coder) and “Support Toolchain Approach with Custom
Target” (Simulink Coder). To get started extending system target files, see “Sample
Custom Targets” (Simulink Coder).

Third-party vendors supply additional system target files for the Simulink Coder
product. For more information about third-party products, see the MathWorks
Connections Program Web page: http://www.mathworks.com/products/
connections.

9 Real-Time Simulation

9-174

http://www.mathworks.com/products/connections
http://www.mathworks.com/products/connections


See Also
tlc

More About
• “Compare System Target File Support” (Simulink Coder)
• “Template Makefiles and Make Options” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)
• “Custom Target Optional Features” (Simulink Coder)
• “Configure Production and Test Hardware” (Simulink Coder)
• “Introduction to the Target Language Compiler” (Simulink Coder)
• “Configure Generated Code with TLC” (Simulink Coder)
• “Target Language Compiler Library Functions Overview” (Simulink Coder)

 See Also

9-175



Precompiled Static Libraries
Simscape and its add-on products provide static run-time libraries precompiled for
compilers supported by Simulink Coder software. For details on supported compilers, see
Supported and Compatible Compilers. For all other compilers, the static run-time
libraries needed by code generated from Simscape models are compiled once per model
during the code generation build process.

To save time during the build process, precompile new or updated S-function libraries
(MEX-files) for a model by using the MATLAB language function
rtw_precompile_libs. You can also use the rtw_precompile_libs function to
recompile a precompiled S-function library. Recompiling a precompiled library allows you
to customize compiler settings for various platforms or environments. For details on
using rtw_precompile_libs, see “Precompile S-Function Libraries” (Simulink Coder).

Typically, a target machine places cross-compiled versions of the precompiled libraries in
a default location as specified in an rtwmakecfg.m file. The default file suffix and file
extension used by the Simulink Coder code generator to name precompiled libraries
during the build process are:

• On Windows® systems, model_rtwlib.lib
• On UNIX® or Linux® systems, model_rtwlib.a

You can control the file destination, location, suffix, and extension by customizing the
system target file (STF) for your target hardware. For more information, see “Control
Library Location and Naming During Build” (Simulink Coder) and “Use rtwmakecfg.m
API to Customize Generated Makefiles” (Simulink Coder).

See Also
rtw_precompile_libs

Related Examples
• “Use rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder)
• “Control Library Location and Naming During Build” (Simulink Coder)
• “Customize Template Makefiles” (Simulink Coder)
• “Precompile S-Function Libraries” (Simulink Coder)

9 Real-Time Simulation

9-176

http://www.mathworks.com/support/compilers/current_release


Initialization Cost
Initialization occurs at the beginning of simulation when simulation time, t, is at the
model Start Time. During the first call to ModelOutputs, Simscape performs model
initialization. The solver determines the simulation starting point by iteratively
computing the initial values for all system variables. Finding a solution that satisfies the
model equations for a nonlinear system can take more time than the time step allows. If
the computation time exceeds the time step, a central processing unit (CPU) overload
occurs. Real-time processors typically respond to CPU overloads by terminating model
execution.

If your real-time application terminates when t is at the model Start Time, disable the
automatic shutdown response on your real-time hardware to CPU overloads for that time
period. To determine how to disable such processes, check with your hardware vendor.

See Also

More About
• “How Simscape Simulation Works” on page 5-6

 Initialization Cost

9-177





Code Generation

• “About Code Generation from Simscape Models” on page 10-2
• “Reasons for Generating Code” on page 10-3
• “Using Code-Related Products and Features” on page 10-4
• “How Simscape Code Generation Differs from Simulink” on page 10-5

10



About Code Generation from Simscape Models
You can use Simulink Coder software to generate standalone C or C++ code from your
Physical Networks models and enhance simulation speed and portability. Certain
features of Simulink software also make use of generated or external code. This section
explains code-related tasks you can perform with your Simscape models.

Code versions of Simscape models typically require fixed-step Simulink solvers, which
are discussed in the Simulink documentation. Some features of Simscape software are
restricted when you translate a model into code. See “How Simscape Code Generation
Differs from Simulink” on page 10-5, as well as “Limitations” on page 5-43.

Note Code generated from Simscape models is intended for rapid prototyping and
hardware-in-the-loop applications. It is not intended for use as production code in
embedded controller applications.

Add-on products based on the Simscape platform also support code generation, with some
variations and exceptions described in their respective documentation.

10 Code Generation

10-2



Reasons for Generating Code
Code generation has many purposes and methods. There are two essential rationales:

• Compiled code versions of Simulink and Simscape models run faster than the original
block diagram models. The time savings can be dramatic.

• An equally important consideration for Simscape models is the standalone
implementation of generated and compiled code. Once you convert part or all of your
model to code, you can deploy the standalone executable program on virtually any
platform, independently of MATLAB.

Converting a model or subsystem to code also hides the original model or subsystem.

 Reasons for Generating Code

10-3



Using Code-Related Products and Features
With Simulink, Simulink Coder, and Simulink Real-Time software, using several code-
related technologies, you can link existing code to your models and generate code
versions of your models.
Code-Related Task Component or Feature
Link existing code written in C or other
supported languages to Simulink models

Simulink S-functions to generate customized
blocks

Speed up Simulink simulations Accelerator mode
Rapid Accelerator mode

Generate standalone fixed-step code
from Simulink models

Simulink Coder software

Generate variable-step code from
Simulink models, well-suited for batch
or Monte Carlo simulations

Simulink Coder Rapid Simulation Target
(RSim)

Convert Simulink model to code and
compile and run it on a target PC

Simulink Coder and Simulink Real-Time
software

10 Code Generation

10-4



How Simscape Code Generation Differs from Simulink
In this section...
“Simscape and Simulink Code Generated Separately” on page 10-5
“Compiler and Processor Architecture Requirements” on page 10-5
“Precompiled Libraries Provided for Selected Compilers” on page 10-5
“Simscape Code Reuse Not Supported” on page 10-6
“Tunable Parameters Not Supported” on page 10-6
“Simscape Run-Time Parameter Inlining Override of Global Exceptions” on page 10-6

In general, using the code generated from Simscape models is similar to using code
generated from regular Simulink models. However, there are certain differences.

Simscape and Simulink Code Generated Separately

Simulink Coder software generates code from the Simscape blocks separately from the
Simulink blocks in your model. The generated Simscape code does not pass through
model.rtw or the Target Language Compiler. All the code generated from a single model
resides in the same directory, however.

Compiler and Processor Architecture Requirements

To generate and execute Simscape code, you must have a compiler and a processor that
support:

• 64-bit precision floating-point arithmetic
• 32-bit integer size

For details on supported compiler versions, see

http://www.mathworks.com/support/compilers/current_release

Precompiled Libraries Provided for Selected Compilers

Simscape software and its add-on products provide static runtime libraries precompiled
for compilers supported by Simulink Coder software. For details, see

 How Simscape Code Generation Differs from Simulink

10-5

http://www.mathworks.com/support/compilers/current_release


http://www.mathworks.com/support/compilers/current_release

For all other compilers, the static runtime libraries needed by code generated from
Simscape models are compiled once per model during the code generation build process.

Simscape Code Reuse Not Supported

Reusable subsystems in Simulink reuse code that is generated once from the subsystem.
You cannot generate reusable code from subsystems containing Simscape blocks.

Tunable Parameters Not Supported

A tunable parameter is a Simulink run-time parameter that you can change while the
simulation is running. Simscape blocks do not support tunable parameters in either
simulations or generated code.

Simscape Run-Time Parameter Inlining Override of Global Exceptions

If you choose to enable parameter inlining for code generated from a Simscape model, the
software inlines all its run-time parameters. If you choose to make some of the global
Simscape block parameters exceptions to inlining, the exceptions are ignored. You can
change global tunable parameters only by regenerating code from the model.

10 Code Generation

10-6

http://www.mathworks.com/support/compilers/current_release


Data Logging

• “About Simulation Data Logging” on page 11-2
• “Enable Data Logging for the Whole Model” on page 11-5
• “Log Data for Selected Blocks Only” on page 11-6
• “Data Logging Options” on page 11-7
• “Log and Plot Simulation Data” on page 11-9
• “Log Simulation Statistics” on page 11-15
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “About the Simscape Results Explorer” on page 11-29
• “Plot Simulation Data in Different Units” on page 11-33
• “Use Custom Units to Plot Simulation Data” on page 11-39
• “View Sparkline Plots of Simulation Data” on page 11-43
• “Stream Logging Data to Disk” on page 11-50

11



About Simulation Data Logging
In this section...
“Suggested Workflows” on page 11-2
“Limitations” on page 11-3

Suggested Workflows

You can log simulation data to the workspace, or to a temporary file on disk, for
debugging and verification. Data logging lets you analyze how internal block variables
change with time during simulation. For example, you might want to see that the
pressure in a hydraulic cylinder is above some minimum value or compare it against the
pump pressure. If you log simulation data, you can later query, plot, and analyze it
without rerunning the simulation.

There are two methods of simulation data logging: you can store the data directly in a
workspace variable, or you can stream data to a temporary file on disk and have the
workspace variable point to that temporary file. For more information on the second
method, see “Stream Logging Data to Disk” on page 11-50. In either case, you interact
with the logged simulation data through the simulation log variable.

Simulation data logging can replace connecting sensors and scopes to track simulation
data. These blocks increase model complexity and slow down simulation. “Log and Plot
Simulation Data” on page 11-9 shows how you can log and plot simulation data instead
of adding sensors to your model. It also shows how you can print the complete logging
tree for a model and plot simulation results for a selected variable.

You can log data either for the whole model, or on a block-by-block basis. In the second
case, the workspace variable will contain simulation data for selected blocks only. To log
data for selected blocks only, you have to:

• Set the logging configuration parameter
• Select the blocks in your model

You can perform these two steps in any order. For more information, see “Log Data for
Selected Blocks Only” on page 11-6.

After running the simulation, you can use the Simscape Results Explorer tool to navigate
and plot the data logging results.

11 Data Logging

11-2



For additional information on how you can query, plot, and analyze data by accessing the
simulation log variable, see the reference pages for the classes
simscape.logging.Node, simscape.logging.Series, and their associated methods.

You can also configure your model to automatically record Simscape logging data, along
with the rest of the simulation data obtained from a model run, using the Simulation
Data Inspector. Set up your model to log simulation data, either for the whole model or
on a block-by-block basis, and enable data recording. Simulate the model, and then open
the Simulation Data Inspector and view the results. For detailed information on how to
enable data recording and how to configure and use the Simulation Data Inspector, see
“Simulation Data Inspector in Your Workflow” (Simulink).

To make your model simulation and data logging compatible with the parfor command,
select the Single simulation output check box on the Data Import/Export pane of
the Configuration Parameters dialog box. In this case, Simscape log data will be part of
the single output object instead of being stored as a separate workspace variable. For
more information, see “Single simulation output” (Simulink).

Limitations

Simulation data logging is not supported for:

• Model reference
• Generated code
• Accelerator mode
• Rapid Accelerator mode

If you use the sim command with a 'StopTime' name-value pair, the Simscape logging
results are not updated.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Log and Plot Simulation Data” on page 11-9

 See Also

11-3



• “Log Simulation Statistics” on page 11-15

More About
• “Data Logging Options” on page 11-7
• “Stream Logging Data to Disk” on page 11-50

11 Data Logging

11-4



Enable Data Logging for the Whole Model
Using data logging is a best practice for Simscape models because it provides access to
important simulation and analysis tools. Therefore, when you create a model by using
the ssc_new function or any of the Simscape model templates, data logging for the whole
model is turned on automatically.

However, for models created using other methods, simulation data is not logged by
default. To turn on the data logging for a model, use the Log simulation data
configuration parameter.

1 In the model window, from the top menu bar, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape. The
right pane displays the Log simulation data option, which is set to None, by
default.

3 From the drop-down list, select All, then click OK.
4 Simulate the model. This creates a workspace variable named simlog (as specified

by the Workspace variable name parameter), which contains the simulation data.

For information on how to access and use the data stored in this variable, see the
related examples listed below. For information on additional data logging
configuration options, see “Data Logging Options” on page 11-7.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and Plot Simulation Data” on page 11-9
• “Log Simulation Statistics” on page 11-15

More About
• “Data Logging Options” on page 11-7

 Enable Data Logging for the Whole Model

11-5



Log Data for Selected Blocks Only
Instead of logging the simulation data for the whole model, you can log data just for the
selected blocks.

1 Set the logging configuration parameter to enable simulation data logging on a
block-by-block basis.

In the model window, from the top menu bar, select Simulation > Model
Configuration Parameters. In the Configuration Parameters dialog box, in the
left pane, select Simscape, then set the Log simulation data parameter to Use
local settings. Click OK.

2 Select the blocks in your model. You can do this before or after setting the logging
configuration parameter.

For each block that you want to select for data logging, right-click on the block. From
the context menu, select Simscape > Log simulation data. A check mark appears
in front of the Log simulation data option.

3 Simulate the model. When the simulation is done, the simulation data log contains
only the data from the selected blocks.

To stop logging data for a previously selected block, right-click on it and select Simscape
> Log simulation data again to remove the check mark.

If you set the Log simulation data parameter to All, the simulation log will contain
data from the whole model, regardless of the block selections. Setting the Log
simulation data parameter to None disables data logging for the whole model.

See Also

Related Examples
• “Log and View Simulation Data for Selected Blocks” on page 11-20

More About
• “Data Logging Options” on page 11-7

11 Data Logging

11-6



Data Logging Options
When you set the Log simulation data configuration parameter to All or Use local
settings, other options in the Data Logging group box become available.

• Log simulation statistics — Select this check box if you want to access and analyze
information on zero crossings during simulation. By default, this check box is not
selected and the zero-crossing data is not logged. For more information on using this
check box, see “Log Simulation Statistics” on page 11-15.

• Open viewer after simulation — Select this check box if you want to open
Simscape Results Explorer, which is an interactive tool that lets you navigate and
plot the simulation data logging results. By default, this check box is not selected. For
more information, see “About the Simscape Results Explorer” on page 11-29.

• Workspace variable name — Specifies the name of the workspace variable that
stores the simulation data. Subsequent simulations overwrite the data in the
simulation log variable. If you want to compare data from two models or two
simulation runs, use different names for the respective log variables. The default
variable name is simlog.

• Decimation — Use this parameter to limit the number of data points saved, by
outputting data points for every nth time step, where n is the decimation factor. The
default is 1, which means that all points are logged. Specifying a different value
results in the first step, and every nth step thereafter, being logged. For example,
specifying 2 logs data points for every other time step, while specifying 10 logs data
points for just one in ten steps.

• Limit data points — Use this check box in conjunction with the Data history (last
N steps) parameter to limit the number of data points saved. The check box is
selected by default. If you clear it, the simulation log variable contains the data points
for the whole simulation, at the price of slower simulation speed and heavier memory
consumption.

• Data history (last N steps) — Specify the number of simulation steps to limit the
number of data points output to the workspace. The simulation log variable contains
the data points corresponding to the last N steps of the simulation, where N is the
value that you specify for the Data history (last N steps) parameter. You have to
select the Limit data points check box to make this parameter available. The
default value logs simulation data for the last 5000 steps. You can specify any other
positive integer number. If the simulation contains fewer steps than the number
specified, the simulation log variable contains the data points for the whole
simulation.

 Data Logging Options

11-7



Saving data to the workspace can slow down the simulation and consume memory. To
avoid this, you can use either the Decimation parameter, or Limit data points in
conjunction with Data history (last N steps), or both methods, to limit the number of
data points saved. The two methods work independently from each other and can be used
separately or together. For example, if you specify a decimation factor of 2 and keep the
default value of 5000 for the Data history (last N steps) parameter, your workspace
variable will contain downsampled data from the last 10,000 time steps in the
simulation.

Another way to reduce memory consumption is to enable data streaming to disk, as
described in “Stream Logging Data to Disk” on page 11-50.

Note The Output options parameter, under Additional parameters on the Data
Import/Export pane of the Configuration Parameters dialog box, also affects which data
points are logged. For more information, see “Model Configuration Parameters: Data
Import/Export” (Simulink) in the Simulink documentation.

After changing your data logging preferences, rerun the simulation to generate a new
data log.

See Also

Related Examples
• “Enable Data Logging for the Whole Model” on page 11-5
• “Log Data for Selected Blocks Only” on page 11-6

More About
• “About Simulation Data Logging” on page 11-2

11 Data Logging

11-8



Log and Plot Simulation Data
This example shows how you can log and plot simulation data instead of adding sensors
to your model.

The model shown represents a permanent magnet DC motor.

This model is very similar to the Permanent Magnet DC Motor example, but, unlike the
example model, it does not include the Sensing unit w (Ideal Rotational Motion Sensor
and PS-Simulink Converter block) along with the Motor RPM scope. For a detailed
description of the Permanent Magnet DC Motor example, see “Evaluating Performance of
a DC Motor”.

1 Build the model, as shown in the preceding illustration. To display hidden block
names, select Display and clear the Hide Automatic Names check box.

2 To enable data logging, open the Configuration Parameters dialog box, in the left
pane, select Simscape, then set the Log simulation data parameter to All and
click OK.

 Log and Plot Simulation Data

11-9



3 Simulate the model. This creates a workspace variable named simlog (as specified
by the Workspace variable name parameter), which contains the simulation data.

4 The simlog variable has the same hierarchy as the model. To see the whole variable
structure, at the command prompt, type:

simlog.print

This command prints the whole data tree.

     mlog_ex_dcmotor1
     +-Electrical_Reference2
     | +-V
     |   +-v
     +-Friction_Mr
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-t

11 Data Logging

11-10



     | +-w
     +-L
     | +-i
     | +-i_L
     | +-n
     | | +-v
     | +-p
     | | +-v
     | +-v
     +-Load_Torque
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-S
     | +-t
     | +-w
     +-Mechanical_Rotational_Reference
     | +-W
     |   +-w
     +-Mechanical_Rotational_Reference1
     | +-W
     |   +-w
     +-Motor_Inertia_J
     | +-I
     | | +-w
     | +-t
     | +-w
     +-Rotational_Electromechanical_Converter
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-i
     | +-n
     | | +-v
     | +-p
     | | +-v
     | +-t
     | +-v
     | +-w
     +-Rotor_ResistanceR
     | +-i
     | +-n

 Log and Plot Simulation Data

11-11



     | | +-v
     | +-p
     | | +-v
     | +-v
     +-x1_5V
       +-i
       +-n
       | +-v
       +-p
       | +-v
       +-v

5 Every node that represents an Across, Through, or internal block variable contains
series data. To get to the series, you have to specify the complete path to it through
the tree, starting with the top-level variable name. For example, to get a handle on
the series representing the angular velocity of the motor, type:
s1 = simlog.Rotational_Electromechanical_Converter.R.w.series;

From here, you can access the values and time vectors for the series and analyze
them.

6 You do not have to isolate series data to plot its values against time, or against
another series. For example, to see how the motor speed (in revolutions per minute)
changes with time, type:
plot(simlog.Rotational_Electromechanical_Converter.R.w,'units','rpm')

11 Data Logging

11-12



7 Compare this figure to the RPM scope display in the Permanent Magnet DC Motor
example. The results are exactly the same.

8 To plot the motor torque against its angular velocity, in rpm, and add descriptive
axis names, type:
plotxy(simlog.Rotational_Electromechanical_Converter.R.w,simlog.Motor_Inertia_J.t,...
   'xunit','rpm','xname','Angular velocity','yname','Torque')

 Log and Plot Simulation Data

11-13



For more information on plotting logged simulation data, see the
simscape.logging.plot and simscape.logging.plotxy reference pages.

11 Data Logging

11-14



Log Simulation Statistics
This example shows how you can access and analyze information on zero crossings
during simulation. By default, the zero-crossing data is not logged. If you select the Log
simulation statistics check box, the simulation log variable contains an additional
SimulationStatistics node for each block that can produce zero crossings, at the
price of slower simulation speed and heavier memory consumption.

1 Open the Mechanical System with Translational Hard Stop example model by typing
ssc_mechanical_system_translational_hardstop in the MATLAB Command
Window.

2 Open the Configuration Parameters dialog box and then, in the left pane, select
Simscape. You can see that this example model already has data logging for the
whole model enabled, as well as simulation statistics, and that the workspace
variable name is simlog_ssc_mechanical_system_translational_hardstop.

 Log Simulation Statistics

11-15

matlab:ssc_mechanical_system_translational_hardstop


3 Simulate the model. This creates a workspace variable named
simlog_ssc_mechanical_system_translational_hardstop (as specified by
the Workspace variable name parameter), which contains the simulation data.
Because you selected the Log simulation statistics checkbox, the workspace
variable contains additional nodes that represent zero-crossing data.

4 The simlog variable has the same hierarchy as the model. To see the whole variable
structure, at the command prompt, type:
simlog_ssc_mechanical_system_translational_hardstop.print

This command prints the whole data tree.
     ssc_mechanical_system_translational_hardstop
     +-Damper_M1
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f

11 Data Logging

11-16



     | +-v
     +-Damper_M2
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f
     | +-v
     +-MTRef_DM1
     | +-V
     |   +-v
     +-MTRef_DM2
     | +-V
     |   +-v
     +-MTRef_VS
     | +-V
     |   +-v
     +-Mass_1
     | +-M
     | | +-v
     | +-f
     | +-v
     +-Mass_2
     | +-M
     | | +-v
     | +-f
     | +-v
     +-Sensor_M1
     | +-Ideal_Translational_Motion_Sensor
     | | +-C
     | | | +-v
     | | +-P
     | | +-R
     | | | +-v
     | | +-V
     | | +-f
     | | +-v
     | | +-x
     | +-MTRef
     | | +-V
     | |   +-v
     | +-PS_Terminator
     | | +-I
     | +-PS_Terminator1

 Log Simulation Statistics

11-17



     |   +-I
     +-Sensor_M2
     | +-Ideal_Translational_Motion_Sensor
     | | +-C
     | | | +-v
     | | +-P
     | | +-R
     | | | +-v
     | | +-V
     | | +-f
     | | +-v
     | | +-x
     | +-MTRef
     |   +-V
     |     +-v
     +-Spring_M1
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f
     | +-v
     | +-x
     +-Translational_Hard_Stop
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-SimulationStatistics
     | | +-zc_1
     | | | +-crossings
     | | | +-values
     | | +-zc_2
     | |   +-crossings
     | |   +-values
     | +-f
     | +-v
     | +-x
     +-Velocity_Source
       +-C
       | +-v
       +-R
       | +-v
       +-S

11 Data Logging

11-18



       +-f
       +-v

5 Under the Translational_Hard_Stop node, there is a node called
SimulationStatistics, which contains zero-crossing information. This means
that Translational Hard Stop is the only block in the model that can generate zero-
crossings during simulation.

6 You can access and analyze this data similar to other data that is logged to
workspace during simulation. For more information, see simscape.logging.Node
and simscape.logging.Series reference pages.

 Log Simulation Statistics

11-19



Log and View Simulation Data for Selected Blocks
This example shows how you can set your model to log simulation data for selected blocks
only and how to view simulation data using Simscape Results Explorer.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. Double-click the DC Motor subsystem to open it.

2 Open the Configuration Parameters dialog box and then, in the left pane, select
Simscape. This example model has data logging for the whole model enabled. To
enable data logging on a block-by-block basis, set the Log simulation data
parameter to Use local settings and click OK.

11 Data Logging

11-20

matlab:ssc_dcmotor


3 Select the blocks for data logging. Right-click the Rotational Electromechanical
Converter block. From the context menu, select Simscape > Log simulation data .

After you select a block for data logging, a check mark appears in front of the Log
simulation data option in the context menu for that block.

 Log and View Simulation Data for Selected Blocks

11-21



4 Right-click the Inertia block and select it for data logging, as described in the
previous step.

5 Simulate the model. This creates a workspace variable named
simlog_ssc_dcmotor (as specified by the Workspace variable name parameter),
which contains the simulation data for selected blocks only.

6 To open the Simscape Results Explorer, right-click one of the blocks previously
selected for data logging, for example, the Rotational Electromechanical Converter
block. From the context menu, select Simscape > View simulation data >
simlog_ssc_dcmotor.

Note If you right-click a block that has not been selected for simulation data logging,
for example, the Load Torque block, the View simulation data option is not
available.

If you change the name of the log variable between simulation runs, the context
menu lists the names of all the log variables associated with the block. For example,
to compare data from two simulation runs, you can use different variable names
(such as simlog1 and simlog2). Open a Simscape Results Explorer window with
simlog1 results, then unlink it from the session and open another window with
simlog2 results. For more information, see “About the Simscape Results Explorer”
on page 11-29.

The Simscape Results Explorer window opens, with the
Rotational_Electromechanical_Converter node already selected in the left
pane, and all the node plots for this block displayed in the right pane. You can see
that it contains simulation data only for the two selected blocks, Rotational
Electromechanical Converter and Inertia.

11 Data Logging

11-22



See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Plot Simulation Data in Different Units” on page 11-33

More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29

 See Also

11-23



Log, Navigate, and Plot Simulation Data
This example shows the basic workflow for logging simulation data for the whole model
and then navigating and plotting the logged data using Simscape Results Explorer.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window.

2 Open the Configuration Parameters dialog box and then, in the left pane, select
Simscape. You can see that this example model already has data logging for the
whole model enabled, as well as simulation statistics, and that the workspace
variable name is simlog_ssc_dcmotor. Select the Open viewer after simulation
check box and click OK.

11 Data Logging

11-24

matlab:ssc_dcmotor


3 Simulate the model. When the simulation is done, the Simscape Results Explorer
window opens. In the left pane, it contains the simulation log tree hierarchy, which
corresponds to the model hierarchy.

 Log, Navigate, and Plot Simulation Data

11-25



4 When you click on a node in the left pane, the corresponding plots appear in the
right pane. Expand the DC_Motor node, and then click the
Rotational_Electromechanical_Converter node to see all the node plots for
this block.

11 Data Logging

11-26



5 To isolate the plot of the rotor angular velocity series against time, keep expanding
the nodes in the left pane until you get to the series data.

 Log, Navigate, and Plot Simulation Data

11-27



See Also

Related Examples
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Plot Simulation Data in Different Units” on page 11-33

More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29

11 Data Logging

11-28



About the Simscape Results Explorer

In this section...
“Link to MATLAB Session” on page 11-29
“Link to Block Diagram” on page 11-30

Simscape Results Explorer is an interactive tool that lets you navigate and plot the
simulation data logging results.

When you configure the model to log simulation data (for the whole model or just the
selected blocks), you can make the Simscape Results Explorer window open
automatically upon completing a simulation run by selecting the Open viewer after
simulation check box in the Configuration Parameters dialog box. For more information
on this workflow, see “Log, Navigate, and Plot Simulation Data” on page 11-24.

Another way to open the Simscape Results Explorer window is to right-click on a block
and, from the context menu, select Simscape > View simulation data. For more
information, see “Log and View Simulation Data for Selected Blocks” on page 11-20.

Link to MATLAB Session

You can control whether the Simscape Results Explorer window is reused when you
rerun the simulation, or a new window is opened after the next simulation run, by
linking and unlinking the window.

When you first open the Simscape Results Explorer window, it is linked to the current
MATLAB session. This means that when you run a new simulation, the results in the
window will be overwritten. To retain the current results and open a new window after

the next simulation, click the  button located in the toolbar above the left pane. The

button appearance changes to  and, when the new window opens after simulation,
that window will be linked to the session. Only one window can be linked to the session,

so if you have multiple windows open, linking one of them (by clicking on its  button)
unlinks the previous one.

 About the Simscape Results Explorer

11-29



Link to Block Diagram

The Simscape Results Explorer tool provides direct linking to the block diagram. These
links let you highlight the appropriate block or open the block dialog box, to easily go
from a variable listed in the Simscape Results Explorer tree to the Variables tab in the
corresponding block dialog box.

When you select a node in the Simscape Results Explorer tree, the status panel in the
bottom-left corner of the window contains the following links:

11 Data Logging

11-30



• Description — If the node represents a block or subsystem, displays the block or
subsystem name. If the node represents a variable, displays the descriptive variable
name, which is the same name that appears on the Variables tab in the block dialog
box. Clicking the link opens the corresponding block dialog box.

For example, in the illustration above, the selected node w represents a variable called
Rotational velocity. Clicking the Description link opens the Inertia block
dialog box, which is the parent block for this variable. In the block dialog box, click
the Variables tab to see the Rotational velocity variable.

• Source — If the node represents a variable, displays the name of the parent block for
this variable. Clicking the link highlights the corresponding block in the block
diagram, opening the appropriate subsystem if needed.

In the same example, clicking the Source link opens the DC Motor subsystem and
highlights the Inertia block, which is the parent block for the selected node w.

 About the Simscape Results Explorer

11-31



Tip If the descriptive name of a variable or block is too long to fit into the status panel, it
is truncated with an ellipsis (…). If you hover over the truncated name, the tooltip for the
status panel displays the entire descriptive name.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Plot Simulation Data in Different Units” on page 11-33
• “Use Custom Units to Plot Simulation Data” on page 11-39

11 Data Logging

11-32



Plot Simulation Data in Different Units
When you display logged simulation data in Simscape Results Explorer, the data along
the x-axis is always time, in seconds. However, you can change the y-axis units directly
on the plot.

Each of the plots has a drop-down arrow next to the unit name for the y-axis. When you
click this arrow, a context menu appears containing names of all the units in the unit
registry that are commensurate with the current plot unit, as well as two other options:

• Default — Use the default unit.
• Specify — Type the unit name or expression in a pop-up window and click OK. The

specified unit name or expression must be commensurate with the current plot unit.

Once you select the option you want, the drop-down menu collapses and the plot is
redrawn in specified units.

This example shows how you can plot the data in different units by selecting the unit
interactively in the plot pane.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. This example model has data logging enabled for
the whole model, with the Workspace variable name parameter set to
simlog_ssc_dcmotor.

 Plot Simulation Data in Different Units

11-33

matlab:ssc_dcmotor


2 Simulate the model to log the simulation data.
3 Open the Simscape Results Explorer window and plot the rotational velocity of the

Inertia block:

sscexplore(simlog_ssc_dcmotor,'DC_Motor.Inertia.w')

11 Data Logging

11-34



By default, Simscape Results Explorer plots rotational velocity in rad/s.
4 To plot data in different units, click the arrow under the unit name and then, from

the context menu, select rpm.

 Plot Simulation Data in Different Units

11-35



The rotational velocity plot is redrawn in rpm.

11 Data Logging

11-36



See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Use Custom Units to Plot Simulation Data” on page 11-39

 See Also

11-37



More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29

11 Data Logging

11-38



Use Custom Units to Plot Simulation Data
Simscape Results Explorer has a set of default units for plotting the logged data. This
example shows how you can change to a custom unit; for example, to plot rotations in
degrees rather than radians.

1 Create a file named ssc_customlogunits.m and save it anywhere on the
MATLAB path. The file should contain a function called ssc_customlogunits,
which returns a cell array of the units to be used:

function customUnits = ssc_customlogunits()
   customUnits = {'deg/s','deg'};
end

Include only the units you want to customize. For everything else, Simscape Results
Explorer will use the default units.

2 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. This example model has data logging enabled for
the whole model, with the Workspace variable name parameter set to
simlog_ssc_dcmotor.

 Use Custom Units to Plot Simulation Data

11-39

matlab:ssc_dcmotor


3 Simulate the model to log the simulation data.
4 Open the Simscape Results Explorer window and plot the rotational velocity of the

Inertia block:

sscexplore(simlog_ssc_dcmotor,'DC_Motor.Inertia.w')

By default, Simscape Results Explorer plots rotational velocity in rad/s.

11 Data Logging

11-40



5
To switch to custom units, click the Plot options icon  and then, in the Options
dialog box, change Units from Default to Custom and click OK. The rotational
velocity plot is redrawn in deg/s.

Tip  Use the function pm_getunits to get the full list of available units.

 Use Custom Units to Plot Simulation Data

11-41



See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and View Simulation Data for Selected Blocks” on page 11-20
• “Plot Simulation Data in Different Units” on page 11-33

More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29

11 Data Logging

11-42



View Sparkline Plots of Simulation Data
This example shows the basic workflow for viewing sparkline plots of logged simulation
data for selected blocks and variables directly on the model canvas. Before viewing
sparkline plots, you must enable data logging for the whole model, or at least for those
blocks where you want to display the data, and run the simulation.

Note If you log Simscape data as part of the single simulation output, the sparkline plots
functionality is not available. For more information, see “Single simulation output”
(Simulink).

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in
the MATLAB Command Window. This example model has data logging for the whole
model enabled.

2 Double-click the DC Motor subsystem to open it.
3 Simulate the model.

 View Sparkline Plots of Simulation Data

11-43

matlab:ssc_dcmotor


4 To enable display of the sparkline plots on the model canvas, in the model window,
from the top menu bar, select Display > Simscape > Toggle Sparklines When
Clicked. This action adds the check mark next to the Toggle Sparklines When
Clicked menu option, and you can start selecting blocks to display sparkline plots of
logged data for their variables. Repeatedly selecting a block toggles the display of its
sparkline plots on and off.

5 Select the Rotational Electromechanical Converter block. Sparkline plots of the first
three variables available for this block are displayed on the canvas, and the field
below the plots shows that 5 more variables are available.

6 To customize which plots are shown on the canvas, click the little wrench symbol in
the field below the plots.

11 Data Logging

11-44



This action displays a list of all the block variables available, with check marks next
to the one currently plotted.

 View Sparkline Plots of Simulation Data

11-45



7 Clear all the check marks and select the last variable w instead. Then click anywhere
on the model canvas to close the variable selection box.

As you hover over the field with the variable name on the canvas, it expands into a
sparkline plot of logged simulation data for that variable.

11 Data Logging

11-46



The plot display includes the minimum and maximum values, as well as time and
value for the current cursor position.

8 As you move your cursor past the right edge of the plot, the current value is replaced
with the last value of the variable. Clicking or hovering over the arrow to the right of
the sparkline plot opens an additional field underneath, which contains a link to the
Simscape Results Explorer. When you click the icon, the Simscape Results Explorer
window opens, displaying the corresponding plot in the right pane, with the
appropriate node selected in the left pane.

 View Sparkline Plots of Simulation Data

11-47



Tips

• If you select a block for which simulation data is not being logged, it displays No
variables instead of the sparkline plots. Right-click the block, select Simscape >
Log simulation data, and rerun the simulation.

11 Data Logging

11-48



• To clear all plots and start again with a clean canvas, select Display > Simscape >
Remove All Sparklines. Then you can select more blocks and variables to display
their sparkline plots.

• Repeatedly selecting the Toggle Sparklines When Clicked menu option toggles the
ability to view the sparkline plots for the model on or off, as indicated by the check
mark. When the check mark is on, repeatedly selecting a block toggles the display of
its sparkline plots on and off.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 11-24
• “Log and View Simulation Data for Selected Blocks” on page 11-20

More About
• “About Simulation Data Logging” on page 11-2
• “About the Simscape Results Explorer” on page 11-29

 See Also

11-49



Stream Logging Data to Disk

In this section...
“Saving and Retrieving Logged Simulation Data” on page 11-51
“Streaming to Disk and parfor Loop” on page 11-52

When you log simulation data, you can either store the data in a workspace variable, or
stream the data to a temporary file on disk and have the workspace variable point to that
temporary file. In either case, you interact with the logged simulation data through the
simulation log variable.

Saving data to the workspace consumes memory. Streaming logged data to disk
significantly increases the data logging capacity, because you are no longer limited by the
system memory.

To enable streaming data to disk for all models, on the MATLAB Toolstrip, click
Preferences. In the left pane of the Preferences dialog box, select Simscape, then select
the Stream data to temporary disk directory check box.

11 Data Logging

11-50



When this preference is turned on, the simulation data, in the form of a simlog object
generated during simulation, is stored in an HDF5 file in a temporary directory under
your username. The workspace variable of type simscape.logging.Node, named as
specified by the Workspace variable name configuration parameter, gets created, but
instead of storing all the simulation data it references the simlog object in the
temporary file. The temporary file persists as long as there is a logging variable name in
the workspace that references it.

You view and analyze logged simulation data by accessing the simulation log variable,
exactly the same way as if the simulation data was stored inside it. All the interaction
between the workspace variable and the stored object happens behind the scenes.
Therefore, you can use the Simscape Results Explorer, as well as all the methods
associated with the simscape.logging.Node and simscape.logging.Series classes
to query, plot, and analyze logged simulation data.

The following limitations apply when streaming data to disk:

• The Limit data points and Data history (last N steps) configuration parameters
are ignored. However, you can use the Decimation parameter to limit the number of
logged data points. For more information, see “Data Logging Options” on page 11-7.

• When you pause model simulation and step back and then forward, all the time points
are logged on disk. This is different from storing the data directly in the workspace
variable, where the log data is rolled back in this case.

Saving and Retrieving Logged Simulation Data

When you log simulation data to workspace, all the data is stored in the workspace
variable. You can use the regular MATLAB interface to save the workspace variable as a
MAT-file and load a MAT-file into a variable. For more information, see “Workspace
Variables and MAT-Files” (MATLAB).

When you stream simulation data to disk, the data is stored as a simlog object in a
temporary file, and the workspace variable references the simlog object. The temporary
file persists as long as there is a logging variable name in the workspace that references
it. The simscape.logging.export function saves the logged simulation data to a
HDF5 file, other than the temporary file, for use in a later session. To load the HDF5 file
containing the stored simlog object back into workspace and associate it with a
workspace variable, use the simscape.logging.import function.

The following restrictions apply:

 Stream Logging Data to Disk

11-51



• When streaming data to disk, you can export and import only the entire simlog
object. This is different from logging data to workspace, where you can save part of
the workspace variable (such as a node in the simlog tree) as a separate MAT-file.

• simscape.logging.export function does not support cross-locale characters in file
name.

Streaming to Disk and parfor Loop

When you simulate a model inside the parfor loop, the temporary HDF5 file is
generated within the address space of the worker threads. To access the simulation data
outside the parfor loop, export the data and then import the exported file outside the
parfor loop.
parfor i=1:2 
   model = 'ssc_dcmotor' 
   load_system(model); 
   set_param(model, 'SimulationMode', 'normal'); 
   set_param(model, 'SimscapeLogType', 'all', 'SimscapeLogName', 'simlog'); 
   simOut = sim(model, 'ReturnWorkspaceOutputs', 'on'); 

   % save to a different file by appending the index 
   file = ['fileName_' num2str(i) '.h5']; 
   simscape.logging.export(simOut.get('simlog'), file); 
end

% import the exported files 
var = simscape.logging.import('fileName_1.h5');
...
 

See Also

More About
• “About Simulation Data Logging” on page 11-2
• “Data Logging Options” on page 11-7
• “About the Simscape Results Explorer” on page 11-29

11 Data Logging

11-52



Model Statistics

• “Simscape Model Statistics” on page 12-2
• “1-D Physical System Statistics” on page 12-5
• “3-D Multibody System Statistics” on page 12-8
• “1-D/3-D Interface Statistics” on page 12-11
• “View Model Statistics” on page 12-13
• “Access Block Variables Using Statistics Viewer” on page 12-19

12



Simscape Model Statistics
Viewing Simscape model statistics is a good way to evaluate the model prior to
simulation. Model statistics provide feedback on the model complexity, so that you can
make informed choices about whether you want to simulate the model in its current
configuration or make changes to it. This approach helps you achieve the desired
simulation performance and goals.

Unlike other derived data (such as data logging or simulation statistics), which is
generated during simulation, model statistics is compile-time data that is generated
before the model is simulated. When you generate model statistics, the model must be in
a compilable state, that is, it must satisfy the requirements described in “Model
Validation” on page 5-8.

Use model statistics as part of the iterative model building process. For example, after
you make a change to the model, you can view model statistics to answer the following
questions:

• Did the change increase the number of variables?
• Does the model have redundant constraints or have I resolved them?
• How many potential zero-crossing signals does the model have?
• Is the circuit high-index, and therefore hard to solve? Did my change have any effect

on the index?

The Statistics Viewer analysis tool is available for models containing Simscape blocks
and blocks from add-on products. Depending on the types of blocks in the model, the
analysis can produce any or all of the following statistics categories:

• 1-D Physical System — This node represents aggregate statistics generated from all
physical networks that are associated with blocks from Simscape, Simscape Driveline,
Simscape Fluids, Simscape Electronics, and Simscape Power Systems Simscape
Components libraries.

• 3-D Multibody System — This node represents aggregate statistics generated from
all physical networks that are associated with blocks from Simscape Multibody
Second Generation library.

• 1-D/3-D Interface — This node lists the connections between the two types of
physical networks. It appears only for models that connect blocks from Simscape
Multibody Second Generation library to Simscape blocks, or blocks from other add-on
products.

12 Model Statistics

12-2



Each statistic is generated separately from each topologically distinct physical network of
these blocks and then aggregated to appear as a single statistic in the Statistics Viewer.

The Sources section of the Statistics Viewer window lists variable sources for the
selected statistic:

• If you select a connection under the 1-D/3-D Interface statistic category, the
Sources section lists the source and destination for this connection, with links to
relevant blocks.

• If you select a statistic with a nonzero value under the 1-D Physical System
category, the Sources section lists all the variables that fall under this statistic.

For each variable, the Source column contains the full path to the variable, starting
from the top-level model, with a link to the relevant block. If you click the link in the
Source column, the corresponding block is highlighted in the block diagram. The
Value column contains the name of the variable, as it would appear in the Variables
tab of the block dialog box.

Updating the Statistics Viewer

Opening the Statistics Viewer does not trigger an automatic block diagram update. For
complex models, a diagram update can last several minutes, and unnecessary diagram
updates could lead to loss of productivity.

When you open the Statistics Viewer, it gets populated with the data from the last
simulation or diagram update. You have to update the data explicitly by clicking the

Refresh button ( ).

The status at the bottom of the viewer window displays the timestamp of its last update.
If you have modified the model since the viewer has last been updated, the Refresh

button displays a warning symbol ( ), and the timestamp at the bottom of the viewer
window turns red to indicate that the data in the viewer might not reflect the latest
model changes.

If you open a model, and then open the Statistics Viewer before simulating the model,
then the viewer does not contain any data. The Refresh button displays a warning
symbol (yellow triangle), and a message at the top of the viewer window tells you to click
the Refresh button to populate the viewer with data.

 Simscape Model Statistics

12-3



See Also

Related Examples
• “View Model Statistics” on page 12-13
• “Access Block Variables Using Statistics Viewer” on page 12-19

More About
• “1-D Physical System Statistics” on page 12-5
• “3-D Multibody System Statistics” on page 12-8
• “1-D/3-D Interface Statistics” on page 12-11

12 Model Statistics

12-4



1-D Physical System Statistics
This node represents aggregate statistics generated from all physical networks that are
associated with blocks from Simscape, Simscape Driveline, Simscape Fluids, Simscape
Electronics, and Simscape Power Systems Simscape Components libraries.

Each statistic is generated separately from each topologically distinct physical network of
these blocks and then aggregated to appear as a single statistic.

The individual statistics are:

• Number of variables — This statistic represents the number of variables associated
with all 1-D physical systems in the model. Variables are categorized further as
continuous, eliminated, and discrete variables.

• Number of continuous variables (retained) — This statistic represents the
number of continuous variables associated with all 1-D physical systems in the model.
Continuous variables are those variables whose values vary continuously with time,
although some continuous variables can change values discontinuously after events.
Continuous variables are categorized further as algebraic and differential variables.

This statistic represents the number of continuous variables in the system after
variable elimination. If a system is truly input-output with no dynamics, it is possible
to completely eliminate all variables and, in that case, the number of variables is zero.

• Number of differential variables — This statistic represents the number of
differential variables associated with all 1-D physical systems in the model.
Differential variables are continuous variables whose time derivative appears in
one or more system equations. These variables add dynamics to the system and
require the solver to use numerical integration to compute their values.

This statistic represents the number of differential variables in the model after
variable elimination.

• Number of algebraic variables — This statistic represents the number of
algebraic variables associated with all 1-D physical systems in the model.
Algebraic variables are continuous system variables whose time derivative does
not appear in any system equations. These variables appear in algebraic equations
but add no dynamics, and this typically occurs in physical systems due to
conservation laws, such as conservation of mass and energy.

This statistic represents the number of algebraic variables in the model after
variable elimination.

 1-D Physical System Statistics

12-5



• Number of continuous variables (eliminated) — This statistic represents the
number of eliminated variables associated with all 1-D physical systems in the model.
Eliminated variables are continuous variables that are eliminated by the software
and are not used in solving the system. Eliminated variables are categorized further
as algebraic and differential variables.

• Number of differential variables — This statistic represents the number of
eliminated differential variables associated with all 1-D physical systems in the
model. Differential variables are continuous variables whose time derivative
appears in one or more system equations. These variables add dynamics to the
system and require the solver to use numerical integration to compute their
values.

This statistic represents the number of differential variables in the model that
have been eliminated.

• Number of algebraic variables — This statistic represents the number of
eliminated algebraic variables associated with all 1-D physical systems in the
model. Algebraic variables are continuous system variables whose time derivative
does not appear in any system equations. These variables appear in algebraic
equations but add no dynamics, and this typically occurs in physical systems due
to conservation laws, such as conservation of mass and energy.

This statistic represents the number of algebraic variables in the model that have
been eliminated.

• Number of discrete variables — This statistic represents the number of discrete,
or event, variables associated with all 1-D physical systems in the model. Discrete
variables are those variables whose values can change only at specific events. Discrete
variables are categorized further as integer-valued and real-valued discrete variables.

• Number of integer-valued variables — This statistic represents the number of
integer-valued discrete variables associated with all 1-D physical systems in the
model. Integer-valued discrete variables are system variables that take on integer
values only and can change their values only at specific events, such as sample
time hits. These variables are typically generated from blocks that are sampled
and run at specified sample times.

• Number of real-valued variables — This statistic represents the number of
real-valued discrete variables associated with all 1-D physical systems in the
model. Real-valued discrete variables are system variables that take on real values
and can change their values only at specific events.

12 Model Statistics

12-6



If you select a local solver in the Solver Configuration block, then all continuous
variables associated with that system are discretized and represented as real-
valued discrete variables.

• Number of zero-crossing signals — This statistic represents the number of scalar
signals that are monitored by the Simulink zero-crossing detection algorithm. Zero-
crossing signals are scalar functions of states, inputs, and time whose crossing zero
indicates discontinuity in the system. These signals are typically generated from
operators and functions that contain discontinuities, such as comparison operators,
abs, sqrt functions, and so on. Times when these signals cross zero are reported as
zero-crossing events. During simulation it is possible for none of these signals to
produce a zero-crossing event or for one or more of these signals to have multiple zero-
crossing events.

• Number of dynamic variable constraints — This statistic represents the number
of constraints involving only dynamic variables and inputs. Such constraints result in
high-index differential algebraic equations (DAEs) and therefore can cause numerical
difficulties or slow down your simulation.

If you select a statistic with a nonzero value, the Sources section lists all the variables
that fall under this statistic. For each variable:

• The Source column contains the full path to the variable, starting from the top-level
model, with a link to the relevant block. If you click the link in the Source column,
the corresponding block is highlighted in the block diagram.

• The Value column contains the name of the variable, as it would appear in the
Variables tab of the block dialog box.

See Also

Related Examples
• “View Model Statistics” on page 12-13
• “Access Block Variables Using Statistics Viewer” on page 12-19

More About
• “Simscape Model Statistics” on page 12-2

 See Also

12-7



3-D Multibody System Statistics
This node represents aggregate statistics generated from all physical networks that are
associated with blocks from Simscape Multibody Second Generation library.

Each statistic is generated separately from each topologically distinct physical network of
these blocks and then aggregated to appear as a single statistic.

The individual statistics are:

• Number of rigidly connected components (excluding ground) — This statistic
provides the number of rigid components present in a mechanical system. Rigid
components are subsets of rigidly connected blocks that represent rigid bodies or rigid
frame networks in a model. These subsets generally include blocks from the Body
Elements library as well as Rigid Transform blocks.

Rigid connections within a rigid component can include Rigid Transform blocks but
not Weld Joint blocks. Rigid Transform blocks provide rigid connections between
blocks in the same rigid component. Weld Joint blocks, like all joint blocks, provide
connections between blocks in different rigid components.

This statistic excludes from the count any rigid component that rigidly connects to the
World Frame block.

• Number of joints (total) — This statistic provides the total number of joints present
in a mechanical system. This number equals the sum of three types of joints: explicit
tree, cut, and implicit 6-DOF joints. For more information, see the statistic
descriptions for these joints.

The kinematic graph provides a practical means to understand the topology of a
model. This graph is a connected, undirected diagram in which each vertex
corresponds to a rigid component and each edge corresponds to a joint. The total
number of joints equals the total number of edges present in this graph.

The kinematic tree is a spanning tree of the kinematic graph in which each closed
loop is opened by cutting one of its edges. If the kinematic graph contains no closed
loops, it is identical to the kinematic tree.

• Number of explicit tree joints — This statistic provides the number of joints in the
kinematic tree of a mechanical system that correspond to explicit joint blocks. Each
tree joint corresponds to an edge in the kinematic tree. The number of explicit tree
joints excludes joints cut from the kinematic graph to generate the kinematic tree.

12 Model Statistics

12-8



For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

• Number of implicit 6-DOF tree joints — This statistic provides the number of 6-
DOF joints in the kinematic tree of a mechanical system that do not correspond to
explicit joint blocks. Simscape Multibody adds implicit 6-DOF joints when the
kinematic graph of a model is not fully connected. These implicit joints connect
previously disconnected portions of the graph to the ground body, adding the edges
required to fully connect the graph. Implicit joints are always tree joints and do not
create loops.

For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

• Number of cut joints — This statistic provides the number of joints that are cut
from the kinematic graph of a mechanical system to generate the associated
kinematic tree. The number of cut joints equals the number of closed loops present in
the kinematic graph.

For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

• Number of constraints — This statistic provides the total number of constraint
blocks in a mechanical system.

• Number of tree degrees of freedom — This statistic provides the total number of
degrees of freedom in the kinematic tree of a mechanical system. This number equals
the sum of all degrees of freedom that the tree joints provide. It excludes degrees of
freedom associated with cut joints.

For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

• Number of position constraint equations (total) — This statistic provides the
number of scalar equations that impose position constraints on a mechanical system.
Constraint equations arise from two types of blocks: Constraints and Joints. Joint
blocks contribute constraint equations only if the joints are cut in the kinematic tree.
The number of position constraint equations that a cut joint contributes equals six
minus the number of degrees of freedom that joint provides.

For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

• Number of position constraint equations (non-redundant) — This statistic
provides the number of unique position constraint equations associated with a model.

 3-D Multibody System Statistics

12-9



This number is smaller than or equal to the total number of position constraint
equations. The difference between the two is the number of redundant position
constraint equations, which are satisfied whenever the unique position constraint
equations are satisfied. Simscape Multibody attempts to remove redundant equations
to improve simulation performance.

• Number of mechanism degrees of freedom (minimum) — This statistic provides
a lower bound on the number of degrees of freedom in a mechanical system. It equals
the difference between the number of tree degrees of freedom and the number of non-
redundant position constraint equations. The actual number of degrees of freedom can
exceed this lower bound if Simscape Multibody fails to detect a position constraint
equation.

Some position constraint equations become redundant only in certain configurations.
If an equation becomes redundant during simulation, the actual number of degrees of
freedom in a model can change. However, that number must still equal or exceed the
lower bound that this statistic provides.

• State vector size — This statistic provides the number of scalar values in the state
vector of a mechanical system.

• Average kinematic loop length — This statistic provides the average number of
edges—or, equivalently, vertices—in the closed loops of a kinematic graph. The
average number is taken over all loops in the graph. If the graph has no kinematic
loops, this number equals zero.

For more information about kinematic graphs and trees, see the statistic description
for Number of joints (total).

See Also

More About
• “Simscape Model Statistics” on page 12-2

12 Model Statistics

12-10



1-D/3-D Interface Statistics
This node lists statistics related to the interface between all 1-D physical and 3-D
multibody systems present in the model. It appears only for models that connect blocks
from Simscape Multibody Second Generation library to blocks from Simscape, Simscape
Driveline, Simscape Fluids, Simscape Electronics, and Simscape Power Systems
Simscape Components libraries.

All connections are listed individually as Connection 1, Connection 2, and so on. If
you select an individual connection, the Sources section lists the source and destination
ports for this connection:

• The Source column contains the full path to the interface port, starting from the top-
level model, with a link to the relevant block. If you click the link in the Source
column, the corresponding block is highlighted in the block diagram.

• The Value column specifies whether the port is the source or destination.

If you expand a connection node, the Statistics Viewer provides the filtering information:
whether a filter is used, and, if yes, the filter order and time constant.

 1-D/3-D Interface Statistics

12-11



See Also

More About
• “Simscape Model Statistics” on page 12-2

12 Model Statistics

12-12



View Model Statistics
This example shows how you can use model statistics to determine the effect of a change
on model complexity.

1 Open the Simple Mechanical System example model. To display hidden block names
for training purposes, select Display and clear the Hide Automatic Names check
box.

2 To view model statistics, in the top menu bar of the model window, select Analysis >
Simscape > Statistics Viewer.

The Simscape Statistics window opens, but it does not contain any data. If you open
a model, and then open the Statistics Viewer before running the simulation, the
statistics data is not available. The Refresh button in the toolbar of the viewer
window displays a warning symbol (yellow triangle), and a message at the top of the
viewer window tells you to click the Refresh button to populate the viewer with
data.

 View Model Statistics

12-13

matlab:ssc_simple_mechanical_system


3 Click the Refresh button. The Simscape Statistics window now displays an overview
of the models statistics in a collapsed state.

4 Click  to expand all nodes.

12 Model Statistics

12-14



You can see that, after variable elimination, the model contains five continuous
differential variables, no algebraic variables, no discrete variables, and no zero-
crossing signals.

5 To limit the range of motion, add a Translational Hard Stop block to the model
diagram, in parallel with the Translational Inertia and the Translational Damper
blocks, as shown in the following figure.

 View Model Statistics

12-15



6 Refresh the model statistics. Again, expand all the nodes.

12 Model Statistics

12-16



The revised model contains six differential variables, twelve discrete real-values
variables, and two zero-crossing signals. This happened because you added a
nonlinear block (Translational Hard Stop). Therefore the linear optimization that
the solver initially performed on the model no longer applies.

 View Model Statistics

12-17



See Also

Related Examples
• “Access Block Variables Using Statistics Viewer” on page 12-19

More About
• “1-D Physical System Statistics” on page 12-5

12 Model Statistics

12-18



Access Block Variables Using Statistics Viewer
This example shows how you can use the Sources section of the Statistics Viewer to
access a block variable of interest, to verify (or change) its initialization priority and
target value.

1 Open the Permanent Magnet DC Motor example model.

2 To view model statistics, in the top menu bar of the model window, select Analysis >
Simscape > Statistics Viewer.

The Simscape Statistics window opens, but it does not contain any data. If you open
a model, and then open the Statistics Viewer before running the simulation, the
statistics data is not available. The Refresh button in the toolbar of the viewer
window displays a warning symbol (yellow triangle), and a message at the top of the
viewer window tells you to click the Refresh button to populate the viewer with
data.

 Access Block Variables Using Statistics Viewer

12-19

matlab:ssc_dcmotor


3 Click the Refresh button. The Simscape Statistics window now displays an overview
of the models statistics in a collapsed state. The status at the bottom of the window
displays the timestamp of its last update.

4 Expand the Number of variables node, then Number of continuous variables
(retained), and then click Number of differential variables.

12 Model Statistics

12-20



You can see that, after variable elimination, the model contains three continuous
differential variables, and the Sources section of the Statistics Viewer lists these
three variables. For each variable:

• The Source column contains the full path to the variable, starting from the top-
level model, with a link to the relevant block.

• The Value column contains the name of the variable, as it would appear in the
Variables tab of the block dialog box.

5 Click the first link in the Source column. The full path indicates that the source
variable w belongs to the Inertia block in the DC Motor subsystem of the top-level
example model, therefore the DC Motor subsystem opens and the corresponding
block is highlighted in the block diagram, as shown in the following figure.

 Access Block Variables Using Statistics Viewer

12-21



6 Double-click the highlighted block.
7 In the block dialog box, click the Variables tab.

According to the Value column in the Statistics Viewer, the name of the variable in
the block dialog box is Rotational velocity. The dialog box shows that this variable
has high initialization priority and a target value of 0 rad/s. You can modify the

12 Model Statistics

12-22



priority and value, if needed, and then open the Variable Viewer to see the model
initialization results.

See Also

Related Examples
• “Set Priority and Initial Target for Block Variables” on page 6-5

More About
• “1-D Physical System Statistics” on page 12-5
• “Block-Level Variable Initialization” on page 6-2
• “Variable Viewer” on page 6-24

 See Also

12-23





Physical Units

• “How to Work with Physical Units” on page 13-2
• “Unit Definitions” on page 13-4
• “How to Specify Units in Block Dialogs” on page 13-11
• “Thermal Unit Conversions” on page 13-13
• “How to Apply Affine Conversion” on page 13-15
• “Angular Units” on page 13-17
• “Units for Angular Velocity and Frequency” on page 13-18
• “Working with Simulink Units” on page 13-20

13



How to Work with Physical Units
Physical signals can have units associated with them. You specify the units along with
the parameter values in the block dialogs, and Simscape unit manager performs the
necessary unit conversion operations when solving a physical network. Simscape blocks
support standard measurement systems. The default block units are meter-kilogram-
second or MKS (SI).

Simscape software comes with a library of standard units, and you can define additional
units as needed (see “Unit Definitions” on page 13-4). You can use these units in your
block diagrams:

• To specify the units of an input physical signal, type a unit name, or a mathematical
expression with unit names, in the Input signal unit field of the Simulink-PS
Converter block dialog. You can also select a unit from a drop-down list, which is
prepopulated with some common input units. Signal units that you specify in a
Simulink-PS Converter block must match the input type expected by the Simscape
block connected to it. For example, when you provide the input signal for an Ideal
Angular Velocity Source block, specify angular velocity units, such as rad/s or rpm,
in the Simulink-PS Converter block, or leave it unitless. If you leave the block
unitless, with the Input signal unit parameter set to 1, then the physical signal
units are inferred from the destination block.

• Simscape block dialogs have drop-down combo boxes of units next to a parameter
value, letting you either select a unit from the drop-down list, or type a unit name (or
a mathematical expression with unit names) directly into the box. These drop-down
lists are automatically populated by those units that are commensurate with the unit
of the parameter, based on the current list of unit definitions. For example, if a
parameter is specified, by default, with the units of meters per second, m/s, the drop-
down list of units contains commensurate units, such as mm/s, in/s, fps (feet per
second), fpm (feet per minute), and so on, including any other linear velocity units
currently defined in your unit registry.

• To specify the units of an output physical signal, type a unit name, or a mathematical
expression with unit names, in the Output signal unit field of the PS-Simulink
Converter block dialog. You can also select a unit from a drop-down list, which is
prepopulated with some common output units. The system compares the units you
specified with the actual units of the input physical signal coming into the converter
block and applies a gain equal to the conversion factor before outputting the Simulink
signal. The default value is 1, which means that the unit is not specified. If you do not

13 Physical Units

13-2



specify a unit, or if the unit matches the actual units of the input physical signal, no
gain is applied.

For more information, see “How to Specify Units in Block Dialogs” on page 13-11.

Note Currently, the blocks in the Physical Signals library (such as PS Add, PS Gain, and
so on) ignore the physical unit of the input signal and just perform calculations on the
value. The output signals of the Physical Signals library blocks are unitless. If you use a
block from the Physical Signals library after a Simulink-PS Converter block or before a
PS-Simulink Converter block, the unit specification on the converter block is ignored. For
more information and examples, see the Simulink-PS Converter and PS-Simulink
Converter block reference pages.

 How to Work with Physical Units

13-3



Unit Definitions
Simscape unit names are defined in the pm_units.m file, which is shipped with the
product. You can open this file to see how the physical units are defined in the product,
and also as an example when adding your own units. This file is located in the directory
matlabroot\toolbox\physmod\common\units\mli\m.

Default registered units and their abbreviations are listed in the following table. Use the
pm_getunits command to get an up-to-date list of units currently defined in your unit
registry. Use the pm_adddimension and pm_addunit commands to define additional
units.

13 Physical Units

13-4



Physical Unit Abbreviations Defined by Default in the Simscape Unit Registry

Quantity Abbreviation Unit
Acceleration gee Earth gravitational

acceleration (9.80665 m/s^2)
Amount of substance mol Mole
Angle rad

deg

rev

Radian

Degree

Revolution
Angular velocity rpm Revolutions/minute
Capacitance F

pF

nF

uF

Farad

Picofarad

Nanofarad

Microfarad
Charge C Coulomb
Conductance S

nS

uS

mS

Siemens

Nanosiemens

Microsiemens

Millisiemens
Current A

pA

nA

uA

mA

kA

Ampere

Picoampere

Nanoampere

Microampere

Milliampere

Kiloampere

 Unit Definitions

13-5



Quantity Abbreviation Unit
Energy J

Btu_IT

eV

Joule

British thermal unit

Electronvolt
Flow rate lpm

gpm

Liter/minute

Gallon/minute
Force N

dyn

lbf

mN

Newton

Dyne

Pound-force

Millinewton
Frequency Hz

kHz

MHz

GHz

Hertz

Kilohertz

Megahertz

Gigahertz
Inductance H

uH

mH

Henry

Microhenry

Millihenry

13 Physical Units

13-6



Quantity Abbreviation Unit
Length m

cm

mm

km

um

in

ft

mi

yd

Meter

Centimeter

Millimeter

Kilometer

Micrometer

Inch

Foot

Mile

Yard
Magnetic flux Wb Weber
Magnetic flux density T

G

Tesla

Gauss
Mass kg

g

mg

lbm

oz

slug

Kilogram

Gram

Milligram

Pound mass

Ounce

Slug

 Unit Definitions

13-7



Quantity Abbreviation Unit
Pressure Pa

kPa

MPa

GPa

bar

kbar

atm

psi

Pascal

Kilopascal

Megapascal

Gigapascal

Bar

Kilobar

Atmosphere

Pound/inch^2
Power W

uW

mW

kW

MW

HP_DIN

Watt

Microwatt

Milliwatt

Kilowatt

Megawatt

Horsepower
Resistance Ohm

kOhm

MOhm

GOhm

Ohm

Kiloohm

Megaohm

Gigaohm

13 Physical Units

13-8



Quantity Abbreviation Unit
Temperature K

degC

degF

degR

deltaK, deltadegC,
deltadegF, deltadegR

Kelvin

Celsius

Fahrenheit

Rankine

Relative temperature units
(see “Thermal Unit
Conversions” on page 13-
13)

Time s

min

hr

ms

us

ns

Second

Minute

Hour

Millisecond

Microsecond

Nanosecond
Velocity mph

fpm

fps

Miles/hour

Feet/minute

Feet/second
Viscosity absolute P

cP

reyn

Poise

Centipoise

Reyn
Viscosity kinematic St

cSt

newt

Stokes

Centistokes

Newt

 Unit Definitions

13-9



Quantity Abbreviation Unit
Volume l

gal

igal

Liter

US liquid gallon

Imperial (UK) gallon
Voltage V

mV

kV

Volt

Millivolt

Kilovolt

Note This table lists the unit abbreviations defined in the product. For information on
how to use the abbreviations above, or mathematical expressions with these
abbreviations, to specify units for the parameter values in the block dialogs, see “How to
Specify Units in Block Dialogs” on page 13-11.

13 Physical Units

13-10



How to Specify Units in Block Dialogs
Simscape block dialogs have drop-down combo boxes for units next to a parameter value.
For example, in the Constant Volume Chamber block dialog box, the drop-down list for
the Chamber volume parameter contains l, gal, in^3, ft^3, mm^3, cm^3, m^3, and
km^3, and the drop-down list for the Initial pressure parameter contains Pa, bar, psi,
and atm.

You can either select a unit from the drop-down list, or type a commensurate unit name
(or a mathematical expression with unit names) directly into the unit combo box of the
block dialog. You can use the abbreviations for the units defined in your registry, or any
valid mathematical expressions with these abbreviations. For example, you can specify
torque in newton-meters (N*m) or pound-feet (lbf*ft). To specify velocity, you can use
one of the defined unit abbreviations (mph, fpm, fps), or an expression based on any
combination of the defined units of length and time, such as meters/second (m/s),
millimeters/second (mm/s), inches/minute (in/min), and so on.

Note Affine units (such as Celsius or Fahrenheit) are not allowed in unit expressions.
For more information, see “About Affine Units” on page 13-13.

The following operators are supported in the unit mathematical expressions:
* Multiplication
/ Division
^ Power
+ Plus — for exponents only
- Minus — for exponents only
() Brackets to specify evaluation order

Metric unit prefixes, such as kilo, milli, or micro, are not supported. For example, if you
want to use milliliter as a unit of volume, you have to add it to the unit registry:

pm_addunit('ml', 0.001, 'l');

The drop-down lists next to parameter names are automatically populated by those units
that are commensurate with the unit of the parameter. If you specify the units by typing,
it is your responsibility to enter units that are commensurate with the unit of the

 How to Specify Units in Block Dialogs

13-11



parameter. The unit manager performs error checking when you click Apply or OK in
the block dialog box, and issues an error if you type an incorrect unit.

In the Simulink-PS Converter and the PS-Simulink Converter block dialog boxes, the
drop-down lists are prepopulated with some common input and output units, and it is
your responsibility to select or type a unit expression commensurate with the expected
input or output units. The error checking for the converter blocks is performed at the
time of simulation. See “Model Validation” on page 5-8 for details.

13 Physical Units

13-12



Thermal Unit Conversions
In this section...
“About Affine Units” on page 13-13
“When to Apply Affine Conversion” on page 13-13

About Affine Units

Thermal units often require an affine conversion, that is, a conversion that performs both
multiplication and addition. To convert from the old value Told to the new value Tnew, we
need a linear conversion coefficient L and an offset O:

Tnew = L * Told + O

For example, to convert a temperature reading from degrees Celsius into degrees
Fahrenheit, the linear term equals 9/5, and the offset equals 32:

TFahr = 9 / 5 * TCels + 32

Simscape unit manager defines kelvin (K) as the fundamental temperature unit. This
makes Celsius (degC) and Fahrenheit (degF) affine units because they are both related
to kelvin with an affine conversion. Rankine (degR) is defined in terms of kelvin with a
zero linear offset and, therefore, is not an affine unit.

The following are the default Simscape unit registry definitions for temperature units:
pm_adddimension('temperature', 'K');    % defines kelvin as fundamental temperature unit
pm_addunit('degC', [1 273.15], 'K');    % defines Celsius in terms of kelvin
pm_addunit('degF', [5/9 -32*5/9], 'C'); % defines Fahrenheit in terms of Celsius
pm_addunit('degR', [5/9 0], 'K');       % defines rankine in terms of kelvin

When to Apply Affine Conversion

In dealing with affine units, sometimes you need to convert them using just the linear
term. Usually, this happens when the value you convert represents relative, rather than
absolute, temperature, ΔT = T1 – T2.

ΔTnew = L * ΔTold

In this case, adding the affine offset would yield incorrect conversion results.

 Thermal Unit Conversions

13-13



For example, the outdoor temperature rose by 18 degrees Fahrenheit, and you need to
input this value into your model. When converting this value into kelvin, use linear
conversion

ΔTkelvin = 5 / 9 * ΔTFahr

and you get 10 K, that is, the outdoor temperature changed by 10 kelvin. If you apply
affine conversion, you will get a temperature change of approximately 265 kelvin, which
is incorrect.

This is even better illustrated if you use degrees Celsius for the input units because the
linear term for conversion between Celsius and kelvin is 1:

• If the outdoor temperature changed by 10 degrees Celsius (relative temperature
value), then it changed by 10 kelvin (do not apply affine conversion).

• If the outdoor temperature is 10 degrees Celsius (absolute temperature value), then it
is 283 kelvin (apply affine conversion).

For relative temperatures, you can also use the relative temperature units: deltaK,
deltadegC, deltadegF, deltadegR. These units are consistent with the Simulink unit
database (see “Units in Simulink” (Simulink)). If you use these units, affine conversion
does not apply.

See Also

Related Examples
• “How to Apply Affine Conversion” on page 13-15

13 Physical Units

13-14



How to Apply Affine Conversion
When you specify affine units for an input temperature signal, it is important to consider
whether you need to apply affine conversion. Usually this decision depends on whether
the signal represents absolute or relative temperature (see “When to Apply Affine
Conversion” on page 13-13).

For example, you model a house-heating system, and you need to input the outdoor
temperature. In the following diagram, the Constant source block represents the average
outdoor temperature, in degrees Celsius, and the Sine source block adds the daily
temperature variation. The average outdoor temperature, in this case, is 12 degrees
Celsius. Daily variation with an amplitude of 8 makes the input outdoor temperature
vary between 4 and 20 degrees Celsius.

This signal is an absolute temperature reading. Therefore, when the signal converts into
kelvin for further computations, you need to specify that it should use affine conversion.
Double-click the Simulink-PS Converter block, type degC in the Input signal unit field,
and select the Apply affine conversion check box.

 How to Apply Affine Conversion

13-15



As a result, the Simulink-PS Converter block outputs a value varying between 277 K and
293 K.

See Also

More About
• “Thermal Unit Conversions” on page 13-13

13 Physical Units

13-16



Angular Units
Simscape implementation of angular units relies on the concept of angular units,
specifically radians, being a unit but dimensionless. The notion of angular units being
dimensionless is widely held in the metrology community. The fundamental angular
unit, radian, is defined in the Simscape unit registry as:

pm_addunit('rad', 1, 'm/m');

which corresponds to the SI and NIST definition [1 on page 13-17]. In other words,
Simscape unit manager does not introduce a separate dimension, 'angle', with a
fundamental unit of 'rad' (similar to dimensions for length or mass), but rather defines
the fundamental angular unit in terms of meter over meter or, in effect, 1.

The additional angular units, degree and revolution, are defined respectively as:

pm_addunit('deg', pi/180, 'rad');
pm_addunit('rev', 2*pi, 'rad');

As a result, forward trigonometric functions, such as sin, cos, and tan, work directly
with arguments expressed in angular units. For example, cosine of 90 degrees equals the
cosine of (pi/2) radians and equals the cosine of (pi/2). Expansion of forward trigonometric
functions works in a similar manner.

Another effect of dimensionless implementation of angular units is the convenience of the
work-energy conversion. For example, torque (in N*m) multiplied by angle (in rad) can be
added directly to energy (in J, or N*m). If you specify other commensurate units for the
components of this equation, Simscape unit manager performs the necessary unit
conversion operations and the result is the same.

References

[1] The NIST Reference on Constants, Units, and Uncertainty, http://
physics.nist.gov/cuu/Units/units.html

 Angular Units

13-17

http://physics.nist.gov/cuu/Units/units.html
http://physics.nist.gov/cuu/Units/units.html


Units for Angular Velocity and Frequency
Angular velocity units, such as rad/s, deg/s, and rpm, can also be used to measure
frequency for cyclical processes. This is consistent with frequency defined as revolutions
per second in a mechanical context, or cycles per second in an electrical context, and lets
you write frequency-dependent equations without requiring the 2*pi conversion factor.
In the SI unit system, however, the unit of frequency is hertz (Hz), defined as 1/s.

Simscape software defines the unit hertz (Hz) as 1/s, in compliance with the SI unit
system. This definition works well when frequency refers to a nonrotational periodic
signal such as the frequency of a PWM source. For cyclical processes, however, the block
equations have to contain the 2*pi conversion factor, to convert the numerical value
specified in Hz, or s-1, to angular frequency.

As a result, frequency units (based on Hz) and angular velocity units (based on rpm) are
not directly convertible, and using one instead of the other may result in unexpected
conversion factors applied to the numerical values by the block equations. For example,
the AC Voltage Source block explicitly multiplies the value you specify for its Frequency
parameter by 2*pi, to convert it to angular frequency before calculating the sine
function.

Drop-down lists of suggested units in block dialogs reflect this distinction. For example, if
a block has a Frequency parameter with the default unit of Hz, the drop-down list for
this parameter contains only units directly convertible to Hz (such as kHz, MHz, and GHz)
and does not contain the angular velocity units. Conversely, if you define a custom block
where the Frequency parameter has the default unit of rpm, its drop-down list of
suggested units will include deg/s and rad/s, but will not contain Hz, kHz, MHz, or GHz.

When you type a unit expression in the parameter units combo box (instead of selecting a
value from the drop-down list), the Simscape unit manager considers the units of
frequency and angular velocity to be commensurate. For example, when the default
parameter unit is Hz, you are able to type not only 1/s, but also expressions such as
deg/s and rad/s. This behavior is consistent with the Simscape implementation of
angular units (see “Angular Units” on page 13-17). It is your responsibility to verify that
the unit expression you typed works correctly with the block equations and reflects your
design intent.

Note Prior to Release R2013a, the unit definition for Hz was rev/s. For information on
how to update legacy models and custom Simscape libraries written in R2012b or earlier,

13 Physical Units

13-18



see Compatibility Considerations under “Unit definition of Hz now consistent with SI”, in
the R2013a Release Notes.

 Units for Angular Velocity and Frequency

13-19



Working with Simulink Units
You can specify physical units on Simulink signals. For details, see “Units in Simulink”
(Simulink).

Interface blocks, such as Simulink-PS Converter and PS-Simulink Converter, handle the
boundary between the Simscape physical network and the Simulink blocks connected to
it. These converter blocks also handle the physical signal units:

• On a Simulink-PS Converter block, you specify the unit using the Input signal unit
parameter. This parameter defines the unit of the physical signal at the PS output
port of the block, which serves as the input signal for the Simscape physical network.

• On a PS-Simulink Converter block, you specify the unit using the Output signal
unit parameter. This unit must be commensurate with the unit of the input physical
signal coming into the block. The block applies a gain equal to the conversion factor
before outputting the Simulink signal.

If you specify a physical unit on a Simulink signal connected to a Simulink-PS Converter
or a PS-Simulink Converter block, the software compares this unit with the unit
specified inside the block. If the parameter value does not match the physical unit of the
Simulink signal connected to the block, you get a warning.

Simulink unit database is fixed: you cannot add units or change unit definitions. When
you add a new unit to your Simscape unit registry, by using the pm_addunit function,
and use this unit inside a Simulink-PS Converter or PS-Simulink Converter block:

• If your unit definition conflicts with the one in the Simulink database, you get a
warning about incompatible unit.

• If you add a unit that does not exist in the Simulink database, you get a warning
about undefined unit.

Note that these warnings apply only to the Simulink database; the Simscape physical
network works as expected.

For example, you want to view the motor speed in revolutions per second, rather than
revolutions per minute (rpm):

1 Add a new unit rps, defined in terms or rpm:

pm_addunit('rps', 1/60, 'rpm');

13 Physical Units

13-20



2 To open the Permanent Magnet DC Motor example model, in the MATLAB
Command Window, type:

ssc_dcmotor
3 Simulate the model. Examine the simulation results in the Motor RPM scope

window.

4 Open the Sensing subsystem (designated as w in the block diagram), double-click the
PS-Simulink Converter block and type rps as the Output signal unit parameter
value.

 Working with Simulink Units

13-21



5 Rerun the simulation.

The model works correctly, with the scope displaying the results in revolutions per
second.

However, the output Simulink signal of the PS-Simulink Converter block now
displays a warning badge, with a message The units 'rps' are undefined.
The detailed message explains that the units are not defined in the Simulink unit
database.

If you issue a pm_getunits command, you can see rps in the return unit list, which
means that the unit is successfully defined in the Simscape unit registry. In other
words, the warning applies only to Simulink unit checking.

13 Physical Units

13-22



6 To turn off the unit inconsistency warnings, in the MATLAB Command Window,
type:

set_param('ssc_dcmotor','UnitsInconsistencyMsg','none');

 Working with Simulink Units

13-23





Add-On Product License Management

• “About the Simscape Editing Mode” on page 14-2
• “Set the Model Loading Preference” on page 14-9
• “Save a Model in Restricted Mode” on page 14-11
• “Work with a Model in Restricted Mode” on page 14-14
• “Switch from Restricted to Full Mode” on page 14-28
• “Get Editing Mode Information” on page 14-30

14



About the Simscape Editing Mode

In this section...
“Suggested Workflows” on page 14-2
“What You Can Do in Restricted Mode” on page 14-3
“What You Can Do in Full Mode” on page 14-4
“Switching Between Modes” on page 14-4
“Working with Block Libraries” on page 14-7

Suggested Workflows

The Simscape Editing Mode functionality is implemented for customers who perform
physical modeling and simulation using Simscape platform and its add-on products:
Simscape Driveline, Simscape Electronics, Simscape Fluids, Simscape Multibody, and
Simscape Power Systems. It allows you to open, simulate, and save models that contain
blocks from add-on products in Restricted mode, without checking out add-on product
licenses, as long as the products are installed on your machine. It is intended to provide
an economical way to distribute simulation models throughout a team or organization.

Note Unless your organization uses concurrent licenses, see the Simscape product page
on the MathWorks Web site for specific information on how to install add-on products on
your machine, to be able to work in Restricted mode.

The Editing Mode functionality supports widespread use of Physical Modeling products
throughout an engineering organization by making it economical for one user to develop
a model and provide it to many other users.

Specifically, this feature allows a user, model developer, to build a model that uses
Simscape platform and one or more add-on products and share that model with other
users, model users. When building the model in Full mode, the model developer must
have a Simscape license and the add-on product licenses for all the blocks in the model.
For example, if a model combines Simscape, Simscape Fluids, and Simscape Driveline
blocks, the model developer needs to check out licenses for all three products to work
with it in Full mode. Once the model is built, model users need only to check out a
Simscape license to simulate the model and fine-tune its parameters in Restricted mode.

14 Add-On Product License Management

14-2

http://www.mathworks.com/products/simscape/editingmodes.html


As long as no structural changes are made to the model, model users can work in
Restricted mode and do not need to check out add-on product licenses.

Another workflow, available with concurrent licenses only, lets multiple users, who all
have Simscape licenses, share a small number of add-on product licenses by working
mostly in Restricted mode, and temporarily switching models to Full mode only when
they need to perform a specific design task that requires being in Full mode.

Note MathWorks recommends that you save all the models in Full mode before
upgrading to a new version of Simulink or Simscape software.

If you have saved a model in Restricted mode and, upon upgrading to a new product
version, open the model and it does not run, switch it to Full mode and save. You can
then again switch to Restricted mode and work without problem.

What You Can Do in Restricted Mode

When your model is open in Restricted mode, you can:

• Simulate the model.
• Inspect parameters.
• Change certain block parameters. In general, you can change numerical parameter

values, but cannot change the block parameterization options. See the block reference
pages for specifics.

• Generate code.
• Make data logging or visualization changes.
• Add or delete regular Simulink blocks (such as sources or scopes) and appropriate

connections.

For other types of changes, listed in the following section on page 14-4, your model has
to be in Full mode. Some of these disallowed changes are impossible to make in
Restricted mode (for example, Restricted parameters are grayed out in block dialog
boxes). Other changes, like changing the physical topology of a model, are not explicitly
disallowed, but if you make these changes in Restricted mode, the software will issue an
error message when you try to run, compile, or save such a model.

 About the Simscape Editing Mode

14-3



What You Can Do in Full Mode

You need to open a model in Full mode if you need to do any of the following:

• Add or delete Physical Modeling blocks (that is, Simscape blocks or blocks from the
add-on product libraries).

• Make or break Physical connections (between Conserving or Physical Signal ports).
• Change the types of signals going into actuators or out of sensors (for example, from

velocity to torque).
• Change configuration parameters.
• Change block parameterization options and other restricted parameters.
• Change physical units of parameters.
• Protect a referenced model containing Physical Modeling blocks (for more

information, see “Protected Model” (Simulink)).

Switching Between Modes

The following flow chart shows what happens when you switch between modes.

14 Add-On Product License Management

14-4



New models are always created in Full mode. You can then either save the model in Full
mode, or switch to Restricted mode and save the model in Restricted mode.

 About the Simscape Editing Mode

14-5



When you load an existing model, the license manager checks whether it has been saved
in Full or Restricted mode.

• If the model has been saved in Restricted mode, it opens in Restricted mode.
• If the model has been saved in Full mode, the license manager checks whether all the

add-on product licenses for this model are available and, if so, opens it in Full mode. If
a add-on product license is not available, the license manager issues an error message
and opens the model in Restricted mode. See also “Example with Multiple Add-On
Products” on page 14-6.

Note You can set a Simulink preference to specify that the models are always to open in
Restricted mode, regardless of the way they have been saved.

When a model is open, you can transition it between Full and Restricted modes at any
time, in either direction:

• When you try to switch from Restricted to Full mode, the license manager checks
whether all the add-on product licenses for this model are available. If a add-on
product license is not available, the license manager issues an error message and the
model stays in Restricted mode. See also “Example with Multiple Add-On Products”
on page 14-6.

• No checks are performed when switching from Full to Restricted mode.

Note If a add-on product license has been checked out to open a model in Full mode, it
remains checked out for the remainder of the MATLAB session. Switching to Restricted
mode does not immediately return the license.

Example with Multiple Add-On Products

When you try to open a model in Full mode or to switch from Restricted to Full mode, the
license manager scans the model and attempts to check out the required add-on product
licenses as it encounters them in the model. If a license is not available, the license
manager issues an error message and the model stays in Restricted mode. The licenses
are checked out sequentially. As a result, if a model uses blocks from multiple add-on
products, some of the add-on product licenses may have already been checked out by the
time the license manager encounters an unavailable license. In this case, these add-on

14 Add-On Product License Management

14-6



product licenses stay checked out until you quit the MATLAB session, even though the
model is in Restricted mode.

For example, consider a model that uses blocks from Simscape Fluids and Simscape
Driveline libraries, but the user who tries to open it has only the Simscape Driveline
license available. It may happen that the license manager checks out a Simscape
Driveline license first, and then tries to check out a Simscape Fluids license, which is not
available. The license manager then issues an error message and opens the model in
Restricted mode, but the Simscape Driveline license stays checked out until the end of
the MATLAB session.

Working with Block Libraries
This section describes the specifics of working with block libraries while using the
Editing Mode functionality. These rules are applicable to any physical modeling blocks,
that is, blocks from all Simscape libraries, including the add-on products. In general, you
need to work in Full mode when you modify a library block. However, when you open a
model that references the modified block, you may work in Restricted mode, under
certain conditions. The following summary details the Editing Mode rules for modifying
and using library blocks:

• To add physical modeling blocks to a library block, you need to work in Full mode.

• If this library block had not previously contained physical modeling blocks, you
need to work in Full mode to load a preexisting model that uses this library block
or to drag this block to a model.

• If this library block had previously contained physical modeling blocks, you can
work in Restricted mode when loading a preexisting model that uses this library
block. However, you have to work in Full mode to drag this block from the library
to a model.

• To add external physical ports to a library block, you need to work in Full mode.

• You can work in Restricted mode when loading a preexisting model that uses this
library block.

• However, to connect these additional ports, you need to work in Full mode because
you are changing the model topology.

• To delete external physical ports from a library block, you need to work in Full mode.
If these ports were connected in a model saved in Restricted mode, loading the model
causes the topology to change, so you need to switch to Full mode to save or compile
the model.

 About the Simscape Editing Mode

14-7



Resolving Block Library Links

All Simscape blocks in your models, including the add-on products' blocks, must have
resolved block library links. You can neither disable nor break these library links. This is
a global requirement of Simscape platform, which is necessary to enforce the Editing
Mode rules for modifying and using library blocks, listed above. A model with broken
library links will neither compile nor save. You must restore all the broken block library
links for your model to be valid.

If you want to customize certain blocks and use them in your models, you must add these
modified blocks to your own custom library, then copy the block instances that you need
to your model.

See Also

Related Examples
• “Set the Model Loading Preference” on page 14-9
• “Save a Model in Restricted Mode” on page 14-11
• “Work with a Model in Restricted Mode” on page 14-14
• “Switch from Restricted to Full Mode” on page 14-28

More About
• “Get Editing Mode Information” on page 14-30

14 Add-On Product License Management

14-8



Set the Model Loading Preference
By default, when you load an existing model, the license manager checks whether it has
been saved in Full or Restricted mode and tries to open it in this mode. However, you can
set your preferences so that the models are always open in Restricted mode, regardless of
the way they have been saved.

1 On the MATLAB Toolstrip, click Preferences. The Preferences dialog box opens.
2 In the left pane of the Preferences dialog box, select Simscape. The right pane

displays the Editing Mode group box. By default, the Load models using option is
set to Editing mode specified in models.

3 Select Restricted mode always from the drop-down list, as shown, and click OK.

Now, when you open a model, the license manager does not attempt to check out add-on
product licenses and always opens the model in Restricted mode.

 Set the Model Loading Preference

14-9



See Also

Related Examples
• “Save a Model in Restricted Mode” on page 14-11
• “Work with a Model in Restricted Mode” on page 14-14
• “Switch from Restricted to Full Mode” on page 14-28

More About
• “About the Simscape Editing Mode” on page 14-2
• “Get Editing Mode Information” on page 14-30
• “Domain-Specific Line Styles” on page 1-42
• “About Simscape Run-Time Parameters” on page 8-2
• “Stream Logging Data to Disk” on page 11-50

14 Add-On Product License Management

14-10



Save a Model in Restricted Mode
Rather than setting your preferences so that all the models always open in Restricted
mode, you can switch an individual model to Restricted mode before saving it. Such a
model will then, by default, open in Restricted mode.

1 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The
right pane displays the Editing Mode option, which is by default set to Full.

3 Select Restricted from the drop-down list, as shown, and click OK.

4 Save the model.

Note The Simscape entry does not appear in the left pane of the Configuration
Parameters dialog box until you add at least one Physical Modeling block to your model.
If you create an additional configuration set for a model, the Simscape entry does not

 Save a Model in Restricted Mode

14-11



appear in it until you either activate it or perform a Physical Modeling operation, such as
adding or deleting a Physical Modeling block or connection, opening a Physical Modeling
block dialog box, and so on.

Once you have switched a model to Restricted mode, working with it follows the rules
described in “Work with a Model in Restricted Mode” on page 14-14. Note, however, that
the add-on product licenses for this model stay checked out until you quit the MATLAB
session.

When you open a model that has been saved in Restricted mode, the license manager
opens it in Restricted mode and does not check out the add-on product licenses.

Example of Saving a Model in Restricted Mode

In this example, you switch a model to Restricted mode and save it.

1 Open the Simple Mechanical System example model
(ssc_simple_mechanical_system). To display hidden block names for training
purposes, select Display and clear the Hide Automatic Names check box.

14 Add-On Product License Management

14-12

matlab:ssc_simple_mechanical_system


2 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

3 In the left pane of the Configuration Parameters dialog box, select Simscape. The
right pane displays the Editing Mode option, which is set to Full by default.

4 Select Restricted from the drop-down list and click OK.
5 Save the model as model_test_edit_mode.

See Also

Related Examples
• “Set the Model Loading Preference” on page 14-9
• “Work with a Model in Restricted Mode” on page 14-14
• “Switch from Restricted to Full Mode” on page 14-28

More About
• “About the Simscape Editing Mode” on page 14-2
• “Get Editing Mode Information” on page 14-30

 See Also

14-13



Work with a Model in Restricted Mode
When you open a model in Restricted mode, you can perform a variety of tasks: simulate
the model, inspect and fine-tune block parameters, add and delete basic Simulink blocks,
and so on. For a complete list of allowed operations, see “What You Can Do in Restricted
Mode” on page 14-3.

When you open a block dialog box in Restricted mode, some of the block parameters may
be grayed out. These are the so-called restricted parameters that can be modified only in
Full mode. In general, you can change numerical parameter values in Restricted mode,
but you cannot change the block parameterization options. See the block reference pages
for specifics. Note also that when a restricted parameter defines the block
parameterization schema, nonrestricted parameters available for fine-tuning in
Restricted mode depend on the value of this restricted parameter. For example, in a
Constant Volume Chamber block, the Chamber specification parameter is restricted.
If, at the time the model entered Restricted mode, this parameter was set to By volume,
then the nonrestricted parameters available for fine-tuning would be Chamber volume,
Specific heat ratio, and Initial pressure. If, however, it was set to By length and
diameter, you will have a different set of parameters available in Restricted mode.

You cannot change physical units in Restricted mode. When you open a block dialog box
in Restricted mode, the drop-down lists of units next to a parameter name and value are
grayed out. When you open a PS-Simulink Converter or Simulink-PS Converter block
dialog box, the Unit parameter is grayed out.

The following examples illustrate operations allowed and disallowed in Restricted mode:

In this section...
“How to Simulate and Fine-Tune a Model in Restricted Mode” on page 14-14
“How to Add and Delete Simulink Blocks in Restricted Mode” on page 14-19
“Performing an Operation Disallowed in Restricted Mode” on page 14-24

How to Simulate and Fine-Tune a Model in Restricted Mode

This example shows how you can work with a model in Restricted mode by changing
certain parameter values and observing the simulation results.

14 Add-On Product License Management

14-14



1 Open the model_test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 14-12. The model opens in
Restricted mode.

2 Open the Lever C Position scope and simulate the model. The models runs and
simulates in Restricted mode.

 Work with a Model in Restricted Mode

14-15



3 Double-click the Wheel and Axle A block to open its dialog box. Notice that the
Mechanism orientation parameter is grayed out, because you cannot modify the
block driving direction in Restricted mode.

14 Add-On Product License Management

14-16



4 Change the Wheel radius parameter value to 0.1.
5 Simulate the model again. Notice that the motion amplitude of node C became

smaller as a result of the wheel radius change.

 Work with a Model in Restricted Mode

14-17



6 Double-click the Mass block and change the Mass parameter value to 24.
7 Simulate the model. Notice that doubling the mass resulted in increased vibrations.

14 Add-On Product License Management

14-18



How to Add and Delete Simulink Blocks in Restricted Mode

This example shows how you can change the model input signal in Restricted mode by
adding and deleting basic Simulink blocks.

1 Open the model_test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 14-12. The model opens in
Restricted mode.

 Work with a Model in Restricted Mode

14-19



2 Open the Lever C Position scope and simulate the model.

14 Add-On Product License Management

14-20



3 Double-click the Force Input subsystem to open it.

 Work with a Model in Restricted Mode

14-21



4 Inside the subsystem, delete the Signal Builder block named Force Input. Replace it
with a Sine Wave block from the Simulink Sources library, as shown below.

14 Add-On Product License Management

14-22



5 Simulate the model again. The model successfully compiles and simulates in
Restricted mode.

 Work with a Model in Restricted Mode

14-23



Performing an Operation Disallowed in Restricted Mode

This example shows what happens when you perform an operation that is disallowed in
Restricted mode.

1 Open the model_test_edit_mode model, which you saved in Restricted mode in
“Example of Saving a Model in Restricted Mode” on page 14-12. The model opens in
Restricted mode.

14 Add-On Product License Management

14-24



2 Double-click the P subsystem to open it.

 Work with a Model in Restricted Mode

14-25



3 Delete the connection line between port P of the Ideal Translational Motion Sensor
block and the PS-Simulink Converter block. Instead, connect port V of the Ideal
Translational Motion Sensor block to the input port of the PS-Simulink Converter
block, to measure the velocity on node C of the lever.

14 Add-On Product License Management

14-26



4 Try to simulate the model. An error message appears saying that the model cannot
be compiled because its topology has been changed while in Restricted mode. You
can either undo the changes, or switch to Full mode, as described in “Switch from
Restricted to Full Mode” on page 14-28.

See Also

Related Examples
• “Set the Model Loading Preference” on page 14-9
• “Save a Model in Restricted Mode” on page 14-11
• “Switch from Restricted to Full Mode” on page 14-28

More About
• “About the Simscape Editing Mode” on page 14-2
• “Get Editing Mode Information” on page 14-30

 See Also

14-27



Switch from Restricted to Full Mode
If you need to perform a task that is disallowed in Restricted mode, you can try to switch
the model to Full mode.

1 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The
right pane displays the Editing Mode option.

3 Select Full from the drop-down list, as shown, and click OK.

The license manager checks whether all the add-on product licenses for this model
are available. If yes, it checks out the add-on product licenses and switches the
model to Full mode. If a add-on product license is not available, the license manager
issues an error message and the model stays in Restricted mode.

14 Add-On Product License Management

14-28



Note If the switch to Full mode fails but some of the add-on product licenses have
already been checked out, they stay checked out until you quit the MATLAB session. For
more information, see “Example with Multiple Add-On Products” on page 14-6.

Once the model is switched to Full mode, you can perform the needed design and
simulation tasks, and then either save it in Full mode, or switch back to Restricted mode
and save it in Restricted mode.

See Also

Related Examples
• “Set the Model Loading Preference” on page 14-9
• “Save a Model in Restricted Mode” on page 14-11
• “Work with a Model in Restricted Mode” on page 14-14

More About
• “About the Simscape Editing Mode” on page 14-2
• “Get Editing Mode Information” on page 14-30

 See Also

14-29



Get Editing Mode Information

In this section...
“What Is the Current Mode?” on page 14-30
“Which Licenses Are Checked Out?” on page 14-30

What Is the Current Mode?

If you are unsure whether the model is currently open in Restricted or Full mode, you
can check by following these steps.

1 From the top menu bar in the model window, select Simulation > Model
Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The
right pane displays the Editing Mode option, which is either Full or Restricted.

3 At this point, you can either try switching the mode by selecting a different option
from the drop-down list, or click Cancel to stay in the current mode.

Which Licenses Are Checked Out?

Use the MATLAB license command to get a list of all the licenses currently in use. In
the MATLAB Command Window, type

license('inuse')

This command returns a list of licenses checked out in the current MATLAB session. In
the list, products are listed alphabetically by their license feature names.

See Also

Related Examples
• “Set the Model Loading Preference” on page 14-9
• “Save a Model in Restricted Mode” on page 14-11
• “Work with a Model in Restricted Mode” on page 14-14

14 Add-On Product License Management

14-30



• “Switch from Restricted to Full Mode” on page 14-28

More About
• “About the Simscape Editing Mode” on page 14-2

 See Also

14-31




